17 research outputs found

    Modelling the impact of vector control interventions on Anopheles gambiae population dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intensive anti-malaria campaigns targeting the <it>Anopheles </it>population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of <it>Anopheles </it>mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions.</p> <p>Methods</p> <p>An ecological model of <it>Anopheles gambiae sensu lato </it>populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density.</p> <p>Results</p> <p>A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density.</p> <p>Conclusions</p> <p>Density-dependent regulation of anopheline larvae in breeding sites ensures robust, stable mosquito populations that can persist in the face of intensive vector control interventions. Selecting combinations of interventions that target different stages in the vector's lifecycle will result in maximum reductions in mosquito density.</p

    Field performance of engineered male mosquitoes

    No full text
    Dengue is the most medically important arthropod-borne viral disease, with 50–100 million cases reported annually worldwide1. As no licensed vaccine or dedicated therapy exists for dengue, the most promising strategies to control the disease involve targeting the predominant mosquito vector, Aedes aegypti. However, the current methods to do this are inadequate. Various approaches involving genetically engineered mosquitoes have been proposed2–4, including the release of transgenic sterile males5–10. However, the ability of laboratory-reared, engineered male mosquitoes to effectively compete with wild males in terms of finding and mating with wild females, which is critical to the success of these strategies, has remained untested. We report data from the first open-field trial involving a strain of engineered mosquito. We demonstrated that genetically modified male mosquitoes, released across 10 hectares for a 4-week period, mated successfully with wild females and fertilized their eggs. These findings suggest the feasibility of this technology to control dengue by suppressing field populations of A. aegypti
    corecore