1,576 research outputs found

    Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement

    Get PDF
    Background Infection is an infrequent but serious complication of prosthetic joint surgery. These infections will usually not clear until the implant is removed and re-implantation has a high failure rate, especially when Pseudomonas aeruginosa is involved. Material and methods We examined Pseudomonas aeruginosa biofilm formation on plain and gentamicin-loaded bone cement with confocal scanning laser microscopy (CSLM). Two different stains were applied in order to visualize and quantify the distribution of bacterial cells and extracellular polymeric substances (slime) from the bone cement surface to the top of the biofilm. Staining with LIVE/DEAD viability stain differentiated between live and dead bacteria within the biofilm, and slime production was evaluated after staining with Calcofluor white. Results CSLM showed that the biofilm was a nonuniform structure of variable thickness, with differences in local bacterial cell and slime densities. Incorporation of gentamicin in bone cement resulted in a 44% reduction in bacterial viability, while the slime density increased significantly. In addition, conventional plate counting showed the development of small-colony variants on gentamicin-loaded bone cement with a decreased sensitivity for gentamicin (MIC: 8 mg/L), as compared with normal-sized colonies taken from plain and gentamicin-loaded bone cement (MIC: 3 mg/L). The enhanced slime production on antibiotic-loaded bone cement, together with the formation of small-colony variants, resulted in decreased susceptibility to antibiotics-probably concomitant with the onset of persistent and relapsing infections. Interpretation In the clinical situation, our findings help to explain the frequent re-implantation failure of joint replacements infected with P. aeruginosa when the procedure has been performed using antibiotic-loaded bone cement

    Financial Risk and International Inbound Tourism: A Malaysian Illustration

    Get PDF
    The impact of financial risk on inbound tourism is explored in this study by examining the effect of shocks in foreign debt level and debt service stability on the tourist arrival rate in Malaysia, based on the Theory of Planned Behavior (TPB). Quarterly data from 2010 to 2020 were obtained from multiple sources, which include the Malaysia Tourism corporate website, the official portal of the Ministry of Economy Malaysia, the Department of Statistics Malaysia, and the Federal Reserve (FRED) Economic statistical website. A VAR model was estimated, together with the Granger causality test, to identify the relationship between financial risk, control variables, and the tourist arrival rate in Malaysia. We specifically consider the effects of financial risk on estimated impulse responses and variance decompositions for the studied variables. Empirical results indicate that there is a unidirectional causality running from foreign debt level stability, debt service stability, and industrial production to tourist arrivals. In addition, there is also bidirectional causality from the effective exchange rate to tourist arrivals and from tourist arrivals to the effective exchange rate. This study is the first of its kind to explore the effect of financial risks in the context of foreign debt levels and debt service stability in Malaysia. The study emphasizes the importance of monitoring the country’s debt financing threshold to maintain financial stability, which if violated would be detrimental to tourism

    Biofilm development in time on a silicone voice prosthesis:A case study

    Get PDF
    Voice prostheses from silicone elastomers become rapidly colonised by a mixed biofilm of bacteria and yeasts. In this study, microorganisms were isolated from biofilms on explanted prostheses after having been in place for various time intervals ranging from 1 to 67 d. The isolates were examined for their identity, adhesion to hexadecane and electrophoretic mobility. Bacteria from early (shorter than 8 d) and late (longer than 8 d) explants could not be classified according to their taxonomy, hydrophobicity or electrophoretic mobility. However, the yeasts clearly revealed a dominance of only hydrophilic Candida albicans isolates from early explants and only hydrophobic C. tropicalis isolates from late explants. These findings may be of significance for the development of strategies to control mixed biofilms on biomaterials.</p

    Surface thermodynamic homeostasis of salivary conditioning films through polar–apolar layering

    Get PDF
    Salivary conditioning films (SCFs) form on all surfaces exposed to the oral cavity and control diverse oral surface phenomena. Oral chemotherapeutics and dietary components present perturbations to SCFs. Here we determine the surface energetics of SCFs through contact angle measurements with various liquids on SCFs following perturbations with a variety of chemotherapeutics as well as after renewed SCF formation. Sixteen-hour SCFs on polished enamel surfaces were treated with a variety of chemotherapeutics, including toothpastes and mouthrinses. After treatment with chemotherapeutics, a SCF was applied again for 3 h. Contact angles with four different liquids on untreated and treated SCF-coated enamel surfaces were measured and surface free energies were calculated. Perturbations either caused the SCF to become more polar or more apolar, but in all cases, renewed SCF formation compensated these changes. Thus, a polar SCF attracts different salivary proteins or adsorbs proteins in a different conformation to create a more apolar SCF surface after renewed SCF formation and vice versa for apolar SCFs. This polar–apolar layering in SCF formation presents a powerful mechanism in the oral cavity to maintain surface thermodynamic homeostasis—defining oral surface properties within a narrow, biological range and influencing chemotherapeutic strategies. Surface chemical changes brought about by dietary or chemotherapeutic perturbations to SCFs make it more polar or apolar, but new SCFs are rapidly formed compensating for changes in surface energetics

    Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing

    Get PDF
    Phenotypically-heterogeneous micro-environments emerge as biofilms mature across different environments. Phenotypic-heterogeneity in biofilm sub-populations not obeying quorum sensing-dictated, collective group-behavior, may be considered as a strategy allowing non-conformists to survive hostile conditions. Heterogeneous phenotype development has been amply studied with respect to gene expression and genotypic changes, but 'biofilm genes' responsible for pre-programmed development of heterogeneous micro-environments in biofilms have never been discovered. Moreover, the question of what triggers the development of phenotypically-heterogeneous micro-environments has never been addressed. The definition of biofilms as 'surface-adhering and surface-adapted' microbial communities contains the word 'surface' twice. This leads us to hypothesize that phenotypically-heterogeneous micro-environments in biofilms develop as an adaptive response of initial colonizers to their adhering state, governed by the forces through which they adhere to a substratum surface. No surface is entirely homogeneous, while adhering bacteria can substantially contribute to stochastically occurring surface heterogeneity. Accordingly, bacterial adhesion forces sensed by initial colonizers differ across a substratum surface, leading to differential mechanical deformation of the cell wall and membrane, where many environmental sensors are located. Bacteria directly adhering to heterogeneous substratum domains therewith formulate their own local responses to their adhering state and command non-conformist behavior, leading to phenotypically-heterogeneous micro-environments in biofilms

    How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State?

    Get PDF
    Bacteria adhere to virtually all natural and synthetic surfaces [1,2]. Although there are a number of different reasons as to why bacteria adhere to a surface, the summarizing answer is brief: ‘‘Adhesion to a surface is a survival mechanism for bacteria’’. Nutrients in aqueous environments have the tendency to accumulate at surfaces [1,3], giving adhering bacteria a benefit over free floating, so-called planktonic ones. This is why mountain creeks may contain crystal clear, drinkable water, while stepping stones underneath the water may be covered with a slippery film of adhering microbes. In the oral cavity, adhesion to dental hard and soft tissues is life-saving to the organisms, because microbes that do not manage to adhere and remain planktonic in saliva are swallowed with an almost certain death in the gastrointestinal tract. Bacterial adhesion is generally recognized as the first step in biofilm formation, and for the human host, the ability of

    A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses

    Get PDF
    A degradable, poly (lactic-co-glycolic acid) (PLGA), gentamicin-loaded prophylactic coating for hydroxyapatite (HA)-coated cementless hip prostheses is developed with similar antibacterial efficacy as offered by gentamicin-loaded cements for fixing traditional, cemented prostheses in bone. We describe the development pathway, from in vitro investigation of antibiotic release and antibacterial properties of this PLGA-gentamicin-HA-coating in different in vitro models to an evaluation of its efficacy in preventing implant-related infection in rabbits. Bone in-growth in the absence and presence of the coating was investigated in a canine model. The PLGA-gentamicin-HA-coating showed high-burst release, with antibacterial efficacy in agar-assays completely disappearing after 4 days, minimising risk of inducing antibiotic resistance. Gentamicin-sensitive and gentamicin-resistant staphylococci were killed by the antibiotic-loaded coating, in a simulated prosthesis-related interfacial gap. PLGA-gentamicin-HA-coatings prevented growth of bioluminescent staphylococci around a miniature-stem mounted in bacterially contaminated agar, as observed using bio-optical imaging. PLGA-gentamicin-HA-coated pins inserted in bacterially contaminated medullary canals in rabbits caused a statistically significant reduction in infection rates compared to HA-coated pins without gentamicin. Bone ingrowth to PLGA-gentamicin-HA-coated pins, in condylar defects of Beagle dogs was not impaired by the presence of the degradable, gentamicin-loaded coating. In conclusion, the PLGA-gentamicin-HA-coating constitutes an effective strategy for infection prophylaxis in cementless prostheses

    Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

    Get PDF
    Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization using stannous octoate as catalyst. The obtained random copolymers were characterized by 1H NMR, FTIR, GPC and TGA. The docetaxel-loaded nanoparticles made of PLGA-TPGS copolymer were prepared by a modified solvent extraction/evaporation method. The nanoparticles were then characterized by various state-of-the-art techniques. The results revealed that the size of PLGA-TPGS nanoparticles was around 250 nm. The docetaxel-loaded PLGA-TPGS nanoparticles could achieve much faster drug release in comparison with PLGA nanoparticles. In vitro cellular uptakes of such nanoparticles were investigated by CLSM, demonstrating the fluorescence PLGA-TPGS nanoparticles could be internalized by human cervix carcinoma cells (HeLa). The results also indicated that PLGA-TPGS-based nanoparticles were biocompatible, and the docetaxel-loaded PLGA-TPGS nanoparticles had significant cytotoxicity against Hela cells. The cytotoxicity against HeLa cells for PLGA-TPGS nanoparticles was in time- and concentration-dependent manner. In conclusion, PLGA-TPGS random copolymer could be acted as a novel and promising biocompatible polymeric matrix material applicable to nanoparticle-based drug delivery system for cancer chemotherapy

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur
    corecore