1,356 research outputs found
Quantum Holographic Encoding in a Two-dimensional Electron Gas
The advent of bottom-up atomic manipulation heralded a new horizon for
attainable information density, as it allowed a bit of information to be
represented by a single atom. The discrete spacing between atoms in condensed
matter has thus set a rigid limit on the maximum possible information density.
While modern technologies are still far from this scale, all theoretical
downscaling of devices terminates at this spatial limit. Here, however, we
break this barrier with electronic quantum encoding scaled to subatomic
densities. We use atomic manipulation to first construct open
nanostructures--"molecular holograms"--which in turn concentrate information
into a medium free of lattice constraints: the quantum states of a
two-dimensional degenerate Fermi gas of electrons. The information embedded in
the holograms is transcoded at even smaller length scales into an atomically
uniform area of a copper surface, where it is densely projected into both two
spatial degrees of freedom and a third holographic dimension mapped to energy.
In analogy to optical volume holography, this requires precise amplitude and
phase engineering of electron wavefunctions to assemble pages of information
volumetrically. This data is read out by mapping the energy-resolved electron
density of states with a scanning tunnelling microscope. As the projection and
readout are both extremely near-field, and because we use native quantum states
rather than an external beam, we are not limited by lensing or collimation and
can create electronically projected objects with features as small as ~0.3 nm.
These techniques reach unprecedented densities exceeding 20 bits/nm2 and place
tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page
manuscript (including 4 figures) + 2 page supplement (including 1 figure);
supplementary movie available at http://mota.stanford.ed
Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands
"© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)
Antimicrobial Stewardship from Policy to Practice: Experiences from UK Antimicrobial Pharmacists
Antimicrobial stewardship in the UK has evolved dramatically in the last 15 years. Factors driving this include initial central funding for specialist pharmacists and mandatory reductions in healthcare-associated infections (particularly Clostridium difficile infection). More recently, the introduction of national stewardship guidelines, and an increased focus on stewardship as part of the UK five-year antimicrobial resistance strategy, have accelerated and embedded developments. Antimicrobial pharmacists have been instrumental in effecting changes at an organizational and national level. This article describes the evolution of the antimicrobial pharmacist role, its impact, the progress toward the actions listed in the five-year resistance strategy, and novel emerging areas in stewardship in the UK
The parent analogy: a reassessment
According to the parent analogy, as a caretaker’s goodness, ability and intelligence increase, the likelihood that the caretaker will make arrangements for the attainment of future goods that are unnoticed or underappreciated by their dependents also increases. Consequently, if this analogy accurately represents our relationship to God, then we should expect to find many instances of inscrutable evil in the world. This argument in support of skeptical theism has recently been criticized by Dougherty. I argue that Dougherty’s argument is incomplete, for there are two plausible ways of construing the parent analogy’s conclusion. I supplement Dougherty’s case by offering a new argument against the parent analogy based on failed expectations concerning the amount of inscrutable evils encountered in the world. Consequently, there remains a significant empirical hurdle for skeptical theism to overcome if it is to maintain its status as a defeater for our reliability when tracking gratuitous evils.Publisher PDFPeer reviewe
Metabolic flexibility as a major predictor of spatial distribution in microbial communities
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology
Dopaminergic modulation of appetitive trace conditioning: the role of D1 receptors in medial prefrontal cortex
Rationale: Trace conditioning may provide a behavioural model suitable to examine the maintenance of ‘on line’ information and its underlying neural substrates.
Objectives: Experiment la was run to establish trace conditioning in a shortened procedure which would be suitable to test the effects of dopamine (DA) D1 receptor agents administered by microinjection directly into the brain. Experiment lb examined the effects of the DA D1 agonist SKF81297 and the DA D1 antagonist SCH23390 following systemic administration in pre-trained animals. Experiment 2 went on to test the effects of systemically administered SKF81297 on the acquisition of trace conditioning. In experiment 3, SKF81297 was administered directly in prelimbic (PL) and infralimbic (IL) sub-regions of medial prefrontal cortex (mPFC) to compare the role of different mPFC sub-regions.
Results: Whilst treatment with SCH23390 impaired motor responding and/or motivation, SKF81297 had relatively little effect in the pre-trained animals tested in experiment 1b. However, systemic SKF81297 depressed the acquisition function at the 2-s trace interval in experiment 2. Similarly, in experiment 3, SKF81297 (0.1 μg in 1.0 μl) microinjected into either PL or IL mPFC impaired appetitive conditioning at the 2-s trace interval.
Conclusions: Impaired trace conditioning under SKF81297 is likely to be mediated in part (but not exclusively) within the IL and PL mPFC sub-regions. The finding that trace conditioning was impaired rather than enhanced under SKF81297 provides further evidence for the inverse U-function which has been suggested to be characteristic of mPFC DA function
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Membranes by the Numbers
Many of the most important processes in cells take place on and across
membranes. With the rise of an impressive array of powerful quantitative
methods for characterizing these membranes, it is an opportune time to reflect
on the structure and function of membranes from the point of view of biological
numeracy. To that end, in this article, I review the quantitative parameters
that characterize the mechanical, electrical and transport properties of
membranes and carry out a number of corresponding order of magnitude estimates
that help us understand the values of those parameters.Comment: 27 pages, 12 figure
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
