726 research outputs found

    Molecular dynamics simulations in graphite and carbon materials

    Get PDF
    Despite having significant applications in the nuclear industry, there have been virtually no molecular dynamics (MD) simulations of radiation damage in graphite. The difficulties in developing an accurate yet computationally inexpensive description of carbon have limited the number of detailed investigations. Although previous work has reported point defect energies and estimates of threshold displacement energies, very little is known about the cascade behaviour and the evolution of damage at the atomic level. Gaining an understanding of the processes caused by irradiation in graphite is central to extending the life span of the current advanced gas-cooled nuclear reactors in the UK. In addition, this will provide crucial information to aid next-generation nuclear technology such as the high-temperature graphitemoderated reactors, which were recently selected for development in the USA.The Environment Dependent Interaction Potential (EDIP) has been employed along with the Zeigler-Biersack-Littmark potential to model radiation damage in graphite. Statistical sampling of 20 initial directions and over a range of energies has revealed that nuclear graphite behaves in a manner distinct from metals and oxides, with damage primarily in the form of isolated point defects as apposed to connected regions of transient damage. Simulations have given evidence of channelling occurring along the channel which has previously not been observed in graphite simulations. Graphite cascades have exhibited a fractal-like branching structure and binary-collision-type behaviour. Results produced agree with historical defect prediction models. Important quantities such as the range of the primary knock-on atom and the average energy loss per collision have been calculated. Results indicate that graphite cascades are not dependent on the initial cell temperature.EDIP has been further employed to simulate the effects of radiation damage incarbon allotropes. Results reveal how a material’s structure affects the collisioncascade and have highlighted the unique radiation response of graphite

    Simulating radiation damage cascades in graphite

    Get PDF
    Molecular dynamics simulation is used to study radiation damage cascades in graphite. High statistical precision is obtained by sampling a wide energy range (100–2500 eV) and a large number of initial directions of the primary knock-on atom. Chemical bonding is described using the Environment Dependent Interaction Potential for carbon. Graphite is found to exhibit a radiation response distinct from metals and oxides primarily due to the absence of a thermal spike which results in point defects and disconnected regions of damage. Other unique attributes include exceedingly short cascade lifetimes and fractal-like atomic trajectories. Unusually for a solid, the binary collision approximation is useful across a wide energy range, and as a consequence residual damage is consistent with the Kinchin–Pease model. The simulations are in agreement with known experimental data and help to clarify substantial uncertainty in the literature regarding the extent of the cascade and the associated damage

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis <it>Jatropha curcas </it>seed oil.</p> <p>Results</p> <p>The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time.</p> <p>Conclusions</p> <p>This study showed that ethanolic KOH concentration was significant variable for <it>J. curcas </it>seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed <it>J. curcas </it>seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC.</p

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials
    corecore