143 research outputs found
Impurity conduction in phosphorus-doped buried-channel silicon-on-insulator field-effect transistors
We investigate transport in phosphorus-doped buried-channel
metal-oxide-semiconductor field-effect transistors at temperatures between 10
and 295 K. In a range of doping concentration between around 2.1 and 8.7 x 1017
cm-3, we find that a clear peak emerges in the conductance versus gate-voltage
curves at low temperature. In addition, temperature dependence measurements
reveal that the conductance obeys a variable-range-hopping law up to an
unexpectedly high temperature of over 100 K. The symmetric dual-gate
configuration of the silicon-on-insulator we use allows us to fully
characterize the vertical-bias dependence of the conductance. Comparison to
computer simulation of the phosphorus impurity band depth-profile reveals how
the spatial variation of the impurity-band energy determines the hopping
conduction in transistor structures. We conclude that the emergence of the
conductance peak and the high-temperature variable-range hopping originate from
the band bending and its change by the gate bias. Moreover, the peak structure
is found to be strongly related to the density of states (DOS) of the
phosphorus impurity band, suggesting the possibility of performing a novel
spectroscopy for the DOS of phosphorus, the dopant of paramount importance in
Si technology, through transport experiments.Comment: 9 figure
Reducing salt intake for prevention of cardiovascular diseases in high-risk patients by advanced health education intervention (RESIP-CVD study), Northern Thailand: study protocol for a cluster randomized trial
BACKGROUND: Decreasing salt consumption can prevent cardiovascular diseases (CVD). Practically, it is difficult to promote people’s awareness of daily salt intake and to change their eating habits in terms of reducing salt intake for better cardiovascular health. Health education programs visualizing daily dietary salt content and intake may promote lifestyle changes in patients at high risk of cardiovascular diseases. METHODS/DESIGN: This is a cluster randomized trial. A total of 800 high-CVD-risk patients attending diabetes and hypertension clinics at health centers in Muang District, Chiang Rai province, Thailand, will be studied with informed consent. A health center recruiting 100 participants is a cluster, the unit of randomization. Eight clusters will be randomized into intervention and control arms and followed up for 1 year. Within the intervention clusters the following will be undertaken: (1) salt content in the daily diet will be measured and shown to study participants; (2) 24-hour salt intake will be estimated in overnight-collected urine and the results shown to the participants; (3) a dietician will assist small group health education classes in cooking meals with less salt. The primary outcome is blood pressure change at the 1-year follow-up. Secondary outcomes at the 1-year follow-up are estimated 24-hoursalt intake, incidence of CVD events and CVD death. The intention-to-treat analysis will be followed. Blood pressure and estimated 24-hour salt intake will be compared between intervention and control groups at the cluster and individual level at the 1-year follow-up. Clinical CVD events and deaths will be analyzed by time-event analysis. Retinal blood vessel calibers of CVD-risk patients will be assessed cross-sectionally. Behavioral change to reduce salt intake and the influencing factors will be determined by structured equation model (SEM). Multilevel regression analyses will be applied. Finally, the cost effectiveness of the intervention will be analyzed. DISCUSSION: This study is unique as it will recruit the individuals most vulnerable to CVD morbidity and mortality by applying the general Framingham CVD risk scoring system. Dietary salt reduction will be applied as a prioritized, community level intervention for the prevention of CVD in a developing country. TRIAL REGISTRATION: ISRCTN3941627
Longitudal distribution pattern of euthecosomatous pteropods along 110E in the Indian sector of the Southern Ocean during austral summer
第2回極域科学シンポジウム 共通セッション「海氷圏の生物地球化学」 11月16日(水) 統計数理研究所 3階セミナー
A Study of Cases with Rib Metastasis Difficult to Distinguish from Microfractures on Bone Scintigraphy
A retrospective study of about 10,000 cases at Kawasaki Medical School Hospital on whom bone scans were performed over a six year period revealed five cases in which metastasis was mistaken for a benign rib lesion. This mistake occurred because the accumulation pattern of the radionuclide in the rib region on the bone scan indicated a so-called "hot spot" observed with microfractures rather than the rod-like increased accumulation along costal bones that is coincident with the finding of bone metastasis. This experience suggests that solitary hot spots in the rib region on bone scans should be diagnosed carefully, as such an accumulation is most frequently associated with a benign etiology but rarely may be a malignant lesion
Recommended from our members
Generation of kidney tubular organoids from human pluripotent stem cells
Recent advances in stem cell research have resulted in methods to generate kidney organoids from human pluripotent stem cells (hPSCs), which contain cells of multiple lineages including nephron epithelial cells. Methods to purify specific types of cells from differentiated hPSCs, however, have not been established well. For bioengineering, cell transplantation, and disease modeling, it would be useful to establish those methods to obtain pure populations of specific types of kidney cells. Here, we report a simple two-step differentiation protocol to generate kidney tubular organoids from hPSCs with direct purification of KSP (kidney specific protein)-positive cells using anti-KSP antibody. We first differentiated hPSCs into mesoderm cells using a glycogen synthase kinase-3β inhibitor for 3 days, then cultured cells in renal epithelial growth medium to induce KSP+ cells. We purified KSP+ cells using flow cytometry with anti-KSP antibody, which exhibited characteristics of all segments of kidney tubular cells and cultured KSP+ cells in 3D Matrigel, which formed tubular organoids in vitro. The formation of tubular organoids by KSP+ cells induced the acquisition of functional kidney tubules. KSP+ cells also allowed for the generation of chimeric kidney cultures in which human cells self-assembled into 3D tubular structures in combination with mouse embryonic kidney cells
The downstream atpE cistron is efficiently translated via its own cis-element in partially overlapping atpB–atpE dicistronic mRNAs in chloroplasts
The chloroplast atpB and atpE genes encode subunits β and ε of the ATP synthase, respectively. They are co-transcribed as dicistronic mRNAs in flowering plants. An unusual feature is an overlap (AUGA) of the atpB stop codon (UGA) with the atpE start codon (AUG). Hence, atpE translation has been believed to depend on atpB translation (i.e. translational coupling). Using an in vitro translation system from tobacco chloroplasts, we showed that both atpB and atpE cistrons are translated from the tobacco dicistronic mRNA, and that the efficiency of atpB translation is higher than that of atpE translation. When the atpB 5′-UTR was replaced with lower efficiency 5′-UTRs, atpE translation was higher than atpB translation. Removal of the entire atpB 5′-UTR arrested atpB translation but atpE translation still proceeded. Introduction of a premature stop codon in the atpB cistron did not abolish atpE translation. These results indicate that atpE translation is independent of atpB translation. Mutation analysis showed that the atpE cistron possesses its own cis-element(s) for translation, located ~25 nt upstream from the start codon
- …