81,593 research outputs found

    Instrumentation for Millimeter-wave Magnetoelectrodynamic Investigations of Low-Dimensional Conductors and Superconductors

    Full text link
    We describe instrumentation for conducting high sensitivity millimeter-wave cavity perturbation measurements over a broad frequency range (40-200 GHz) and in the presence of strong magnetic fields (up to 33 tesla). A Millimeter-wave Vector Network Analyzer (MVNA) acts as a continuously tunable microwave source and phase sensitive detector (8-350 GHz), enabling simultaneous measurements of the complex cavity parameters (resonance frequency and Q-value) at a rapid repetition rate (approx. 10 kHz). We discuss the principal of operation of the MVNA and the construction of a probe for coupling the MVNA to various cylindrical resonator configurations which can easily be inserted into a high field magnet cryostat. We also present several experimental results which demonstrate the potential of the instrument for studies of low-dimensional conducting systems.Comment: 20 pages including fig

    Managing healthcare workflows in a multi-agent system environment

    Get PDF
    Whilst Multi-Agent System (MAS) architectures appear to offer a more flexible model for designers and developers of complex, collaborative information systems, implementing real-world business processes that can be delegated to autonomous agents is still a relatively difficult task. Although a range of agent tools and toolkits exist, there still remains the need to move the creation of models nearer to code generation, in order that the development path be more rigorous and repeatable. In particular, it is essential that complex organisational process workflows are captured and expressed in a way that MAS can successfully interpret. Using a complex social care system as an exemplar, we describe a technique whereby a business process is captured, expressed, verified and specified in a suitable format for a healthcare MAS.</p

    On Superalgebras of Matrices with Symmetry Properties

    Get PDF
    It is known that semi-magic square matrices form a 2-graded algebra or superalgebra with the even and odd subspaces under centre-point reflection symmetry as the two components. We show that other symmetries which have been studied for square matrices give rise to similar superalgebra structures, pointing to novel symmetry types in their complementary parts. In particular, this provides a unifying framework for the composite `most perfect square' symmetry and the related class of `reversible squares'; moreover, the semi-magic square algebra is identified as part of a 2-gradation of the general square matrix algebra. We derive explicit representation formulae for matrices of all symmetry types considered, which can be used to construct all such matrices.Comment: 25 page

    Resonant Tunneling in Truly Axial Symmetry Mn12 Single-Molecule Magnets: Sharp Crossover between Thermally Assisted and Pure Quantum Tunneling

    Full text link
    Magnetization measurements of a truly axial symmetry Mn12-tBuAc molecular nanomagnet with a spin ground state of S = 10 show resonance tunneling. This compound has the same magnetic anisotropy as Mn12-Ac but the molecules are better isolated and the crystals have less disorder and a higher symmetry. Hysteresis loop measurements at several temperatures reveal a well-resolved step fine-structure which is due to level crossings of excited states. All step positions can be modeled by a simple spin Hamiltonian. The crossover between thermally assisted and pure quantum tunneling can be investigated with unprecedented detail.Comment: 5 pages, 6 figure

    Dynamics of axial separation in long rotating drums

    Full text link
    We propose a continuum description for the axial separation of granular materials in a long rotating drum. The model, operating with two local variables, concentration difference and the dynamic angle of repose, describes both initial transient traveling wave dynamics and long-term segregation of the binary mixture. Segregation proceeds through ultra-slow logarithmic coarsening.Comment: 4 pages, 3 Postscript figures; submitted to PR

    Electrodynamics of quasi-two-dimensional BEDT-TTF charge transfer salts

    Full text link
    We consider the millimeter-wave electrodynamics specific to quasi-two-dimensional conductors and superconductors based on the organic donor molecule BEDT-TTF. Using realistic physical parameters, we examine the current polarizations that result for different oscillating (GHz) electric and magnetic field polarizations. We show that, in general, it is possible to discriminate between effects (dissipation and dispersion) due to in-plane and interlayer ac currents. However, we also show that it is not possible to selectively probe any single component of the in-plane conductivity tensor, and that excitation of interlayer currents is strongly influenced by the sample geometry and the electromagnetic field polarization.Comment: 5 pages including 3 figures Minor correction to figure
    • …
    corecore