1,412 research outputs found
High Resolution Image Reconstruction of Polymer Composite Materials Using Neural Networks
A neural network is an artificial intelligence technique inspired by a simplistic model of biological neurons and their connectivity. A neural network has the ability to learn an input-output function without a priori knowledge of the relationship between them. Typically a neural network consists of layers of neurons, whereby each neuron in a given layer is fully connected to neurons in adjacent layers. Figure 1 shows such an arrangement with three layers, called the input, hidden and output layers. The connection strengths between neurons, often referred to as weights, are modified by a training phase. The training phase used here utilizes an error back propagation algorithm [1]. During training the neural network is presented with input which propagates through the network producing a corresponding output. A comparison of the actual output with the desired or target output generates an error which is used to adjust the neural network’s weights according to an error gradient descent technique [2]. This procedure is repeated for many different input and desired output pairs allowing the neural network to learn the input-output function
Scaling Laws for Transition from Varicose to Whipping Instabilities in Electrohydrodynamic Jetting
China Scholarship Council (CSC)European Union’s Horizon 2020 research and innovation program Grant No. 646296Engineering and Physical Sciences Research Council (UK) under Grant No. EP/N509917/
Breakup length of electrified liquid jets: Scaling laws and applications
The growth rate of infinitesimal perturbations in electrified jets at the viscid and inviscid limits exhibit different behavior. Using Saville’s approach to estimate the growth rate for perturbations in the long wavelength limit and by neglecting the effects of gravity, we derived two scaling laws for the jet breakup length in two regimes of the Taylor cone mode. Our experimental measurements show clear dependency of the jet length on the flow rate; however changing the applied voltage has appeared to affect only the cone angle, but not to the jet itself. The experimental data has an excellent collapse with our theoretical model in both cases. The transition between viscid and inviscid limits appears to occur at an electric Reynolds number, based upon jet diameter of Re≃5. Finally, we showed how to enhance the quality and the resolution in Electrostatic Inkjet Printing applications by setting the printing distance lower than the jet length and predicting the line width as a function of the operational parameters.This work was supported by the Engineering and Physical
Sciences Research Council (United Kingdom) under
Grant No. EP/N509917/1 and the European Union’s Horizon
2020 research and innovation program under Grant
No. 646296
A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris
The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous ldquobridgesrdquo. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections
The validity of the EQ-5D-3L items: An investigation with type 2 diabetes patients from six European countries
Background: Most previous studies concerning the validity of the EQ-5D-3L items refer to applications of only a single language version of the EQ-5D-3L in only one country. Therefore, there is little information concerning the extent to which the results can be generalised across different language versions and
Dusty Planetary Systems
Extensive photometric stellar surveys show that many main sequence stars show
emission at infrared and longer wavelengths that is in excess of the stellar
photosphere; this emission is thought to arise from circumstellar dust. The
presence of dust disks is confirmed by spatially resolved imaging at infrared
to millimeter wavelengths (tracing the dust thermal emission), and at optical
to near infrared wavelengths (tracing the dust scattered light). Because the
expected lifetime of these dust particles is much shorter than the age of the
stars (>10 Myr), it is inferred that this solid material not primordial, i.e.
the remaining from the placental cloud of gas and dust where the star was born,
but instead is replenished by dust-producing planetesimals. These planetesimals
are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our
Solar system that produce the interplanetary dust that gives rise to the
zodiacal light (tracing the inner component of the Solar system debris disk).
The presence of these "debris disks" around stars with a wide range of masses,
luminosities, and metallicities, with and without binary companions, is
evidence that planetesimal formation is a robust process that can take place
under a wide range of conditions. This chapter is divided in two parts. Part I
discusses how the study of the Solar system debris disk and the study of debris
disks around other stars can help us learn about the formation, evolution and
diversity of planetary systems by shedding light on the frequency and timing of
planetesimal formation, the location and physical properties of the
planetesimals, the presence of long-period planets, and the dynamical and
collisional evolution of the system. Part II reviews the physical processes
that affect dust particles in the gas-free environment of a debris disk and
their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary
Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets,
Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling
BACKGROUND: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. FINDINGS: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
Hypoxia Alters Cell Cycle Regulatory Protein Expression and Induces Premature Maturation of Oligodendrocyte Precursor Cells
Periventricular white matter injury (PWMI) is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs) are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro.Cultures of oligodendrocyte precursor cells (OPCs) were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2) or hypoxia (1% or 4% O(2)) for up to 7 days. We observed that 1% O(2) lead to an increase in the proportion of myelin basic protein (MBP)-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha)-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1) and phospho-cdc2, which play a role in OL differentiation, was seen as well.These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation
- …