19 research outputs found

    Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner

    Get PDF
    High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO

    A comparison of the musculoskeletal assessments of the shoulder girdles of professional rugby players and professional soccer players

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To identify posture types that exist in professional rugby players, and compare them with a population of non-overhead athletes in order to identify possible relationships towards the potential for shoulder injuries.</p> <p>Design</p> <p>Observational design Setting: Sports Medicine Clinic Participants: Convenience sample Methodology: Static assessment of posture was carried out in standing, active and passive range of glenohumeral motion, and isometric strength was carried out in accordance with previously recorded protocols.</p> <p>Interventions</p> <p>Nil Outcome Measures: Observational classification of posture, active and passive range of glenohumeral joint range of motion, isometric strength of selected muscle groups, selected muscle flexibility and Hawkins and Neer impingement tests.</p> <p>Results</p> <p>There was a significant difference on range of motion between the two groups (0.025–0.000), isometric middle (0.024–0.005), and lower trapezius (0.01–0.001). Conclusion: There were significant differences between strength and flexibility of muscles around the shoulder girdle between professional rugby players and a control group of professional non-overhead athletes.</p
    corecore