39 research outputs found

    Failure of a repeat course of cyclooxygenase inhibitor to close a PDA is a risk factor for developing chronic lung disease in ELBW infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimal treatment regimen or protocol for managing a persistent patent ductus arteriosus (PDA) in extremely low birth weight (ELBW) infants has not been well established. This study was aimed at evaluating the failure rate of a cyclooxygenase (COX) inhibitor (COI) for PDA closure and to determine the incidence of a PDA requiring ligation in ELBW infants. We examined the clinical characteristics and risk factors that may predict the clinical consequences of failure of PDA closure by COI.</p> <p>Methods</p> <p>Medical information on 138 infants with birth weight (BW) < 1000 gm who survived for > 48 hours was retrieved. Clinical characteristics and outcomes of patients whose PDAs closed with COI were compared with those who did not close.</p> <p>Results</p> <p>Of the 138 patients, 112 survived to discharge. Eighty (71.4%) of those who survived received 1-3 courses of COI treatment for a symptomatic PDA. A total of 32 (40%) failed COI treatment and underwent PDA ligation. Multivariable logistic regression analysis suggests that the observed differences in the outcomes in infants with or without symptomatic PDA can be explained by the babies with symptomatic PDA being more immature and sicker. No significant difference was seen in the incidence of chronic lung disease (CLD) in infants whose PDA was treated medically versus those who failed medical treatment and then underwent ligation. However, after adjusting for disease severity and other known risk factors, the odds ratio of developing CLD for surviving babies with a persistent PDA compared to those whose PDA was successfully closed with 1-2 courses of COI is 3.24 (1.07-9.81; p = 0.038).</p> <p>Conclusions</p> <p>When successfully treated, PDA in ELBW infants did not contribute significantly to the adverse outcomes such as CLD, retinopathy of prematurity (ROP) and age at discharge. This suggests that it is beneficial for a hemodynamically significant PDA to be closed. The failure of a repeat course of COI to close a PDA is a major risk factor for developing CLD in ELBW infants.</p

    miR-125b Promotes Early Germ Layer Specification through Lin28/let-7d and Preferential Differentiation of Mesoderm in Human Embryonic Stem Cells

    Get PDF
    Unlike other essential organs, the heart does not undergo tissue repair following injury. Human embryonic stem cells (hESCs) grow indefinitely in culture while maintaining the ability to differentiate into many tissues of the body. As such, they provide a unique opportunity to explore the mechanisms that control human tissue development, as well as treat diseases characterized by tissue loss, including heart failure. MicroRNAs are small, non-coding RNAs that are known to play critical roles in the regulation of gene expression. We profiled the expression of microRNAs during hESC differentiation into myocardial precursors and cardiomyocytes (CMs), and determined clusters of human microRNAs that are specifically regulated during this process. We determined that miR-125b overexpression results in upregulation of the early cardiac transcription factors, GATA4 and Nkx2-5, and accelerated progression of hESC-derived myocardial precursors to an embryonic CM phenotype. We used an in silico approach to identify Lin28 as a target of miR-125b, and validated this interaction using miR-125b knockdown. Anti-miR-125b inhibitor experiments also showed that miR-125b controls the expression of miRNA let-7d, likely through the negative regulatory effects of Lin28 on let-7. We then determined that miR-125b overexpression inhibits the expression of Nanog and Oct4 and promotes the onset of Brachyury expression, suggesting that miR-125b controls the early events of human CM differentiation by inhibiting hESC pluripotency and promoting mesodermal differentiation. These studies identified miR-125b as an important regulator of hESC differentiation in general, and the development of hESC-derived mesoderm and cardiac muscle in particular. Manipulation of miR-125b-mediated pathways may provide a novel approach to directing the differentiation of hESC-derived CMs for cell therapy applications
    corecore