108 research outputs found

    Location-Specific Epigenetic Regulation of the Metallothionein 3 Gene in Esophageal Adenocarcinomas

    Get PDF
    Metallothionein 3 (MT3) maintains intracellular metal homeostasis and protects against reactive oxygen species (ROS)-induced DNA damage. In this study, we investigated the epigenetic alterations and gene expression of the MT3 gene in esophageal adenocarcinomas (EACs).Using quantitative bisulfite pyrosequencing, we detected unique DNA methylation profiles in the MT3 promoter region. The CpG nucleotides from -372 to -306 from the transcription start site (TSS) were highly methylated in tumor (n = 64) and normal samples (n = 51), whereas CpG nucleotides closest to the TSS (-4 and +3) remained unmethylated in all normal and most tumor samples. Conversely, CpG nucleotides in two regions (from -139 to -49 and +296 to +344) were significantly hypermethylated in EACs as compared to normal samples [FDR<0.001, -log10(FDR)>3.0]. The DNA methylation levels from -127 to -8 CpG sites showed the strongest correlation with MT3 gene expression (r = -0.4, P<0.0001). Moreover, the DNA hypermethylation from -127 to -8 CpG sites significantly correlated with advanced tumor stages and lymph node metastasis (P = 0.005 and P = 0.0313, respectively). The ChIP analysis demonstrated a more repressive histone modification (H3K9me2) and less active histone modifications (H3K4me2, H3K9ace) in OE33 cells than in FLO-1 cells; concordant with the presence of higher DNA methylation levels and silencing of MT3 expression in OE33 as compared to FLO-1 cells. Treatment of OE33 cells with 5-Aza-deoxycitidine restored MT3 expression with demethylation of its promoter region and reversal of the histone modifications towards active histone marks.In summary, EACs are characterized by frequent epigenetic silencing of MT3. The choice of specific regions in the CpG island is a critical step in determining the functional role and prognostic value of DNA methylation in cancer cells

    Water Quality and Herbivory Interactively Drive Coral-Reef Recovery Patterns in American Samoa

    Get PDF
    BACKGROUND: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process. METHODOLOGY/PRINCIPAL FINDINGS: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. CONCLUSIONS/SIGNIFICANCE: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management

    Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe

    Get PDF
    The enemy release hypothesis posits that the initial success of invasive species depends on the scarcity and poor adaptation of native natural enemies such as predators and parasitoids. As for parasitoids, invading hosts are first attacked at low rates by a species-poor complex of mainly generalist species. Over the years, however, parasitoid richness may increase either because the invading host continuously encounters new parasitoid species during its spread (geographic spread-hypothesis) or because local parasitoids need different periods of time to adapt to the novel host (adjustment-hypothesis). Both scenarios should result in a continuous increase of parasitoid richness over time. In this study, we reconstructed the development of the hymenopteran parasitoid complex of the invasive leafminer Cameraria ohridella (Lepidoptera, Gracillariidae). Our results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella. The same variables also explain the individual parasitism rates of several species in the parasitoid complex, but fail to explain the abundance of others. Evidence supporting the “geographic spread-hypothesis” was found in the parasitism pattern of Cirrospilus talitzkii (Hymenoptera, Eulophidae), while that of Pediobius saulius, another eulophid, indicated an increase of parasitism rates by behavioral, phenological or biological adjustments. Compared to fully integrated host-parasitoid associations, however, parasitism rates of C. ohridella are still very low. In addition, the parasitoid complex lacks specialists, provided that the species determined are valid and not complexes of cryptic (and presumably more specialized) species. Probably, the adjustment of specialist parasitoids requires more than a few decades, particularly to invaders which establish in ecological niches free of native hosts, thus eliminating any possibility of recruitment of pre-adapted parasitoids

    The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity

    Get PDF
    The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide

    GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

    Get PDF
    The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15 ∶ 00 UTC and 1 October 2019 15 ∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the eight additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects ≥ 3 M⊙ ) is increased compared to GWTC-2, with total masses from ∼ 14 M ⊙ for GW190924_021846 to ∼ 182 M⊙ for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight new events have effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with χeff < 0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe

    All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data

    Get PDF
    We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10-25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10-26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10-25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched

    All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs

    Get PDF
    We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, {\tt PyStoch}, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every frequency bin of width 1/321/32~Hz in the range 20172620-1726~Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place 95%95\% confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range (0.0309.6)×1024(0.030 - 9.6) \times10^{-24}. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results
    corecore