22 research outputs found

    Introduction to Configuration Path Integral Monte Carlo

    Full text link
    In low-temperature high-density plasmas quantum effects of the electrons are becoming increasingly important. This requires the development of new theoretical and computational tools. Quantum Monte Carlo methods are among the most successful approaches to first-principle simulations of many-body quantum systems. In this chapter we present a recently developed method---the configuration path integral Monte Carlo (CPIMC) method for moderately coupled, highly degenerate fermions at finite temperatures. It is based on the second quantization representation of the NN-particle density operator in a basis of (anti-)symmetrized NN-particle states (configurations of occupation numbers) and allows to tread arbitrary pair interactions in a continuous space. We give a detailed description of the method and discuss the application to electrons or, more generally, Coulomb-interacting fermions. As a test case we consider a few quantum particles in a one-dimensional harmonic trap. Depending on the coupling parameter (ratio of the interaction energy to kinetic energy), the method strongly reduces the sign problem as compared to direct path integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy which is of particular importance for dense matter in laser plasmas or compact stars. In order to provide a self-contained introduction, the chapter includes a short introduction to Metropolis Monte Carlo methods and the second quantization of quantum mechanics.Comment: chapter in book "Introduction to Complex Plasmas: Scientific Challenges and Technological Opportunities", Michael Bonitz, K. Becker, J. Lopez and H. Thomsen (Eds.) Springer Series "Atomic, Optical and Plasma Physics", vol. 82, Springer 2014, pp. 153-194 ISBN: 978-3-319-05436-0 (Print) 978-3-319-05437-7 (Online

    The Extinction of Dengue through Natural Vulnerability of Its Vectors

    Get PDF
    Dengue transmission has not always been confined to tropical areas. In some cases, this has been due to a reduced geographic range of the mosquitoes that are able to carry dengue viruses. In Australia, Aedes aegypti mosquitoes once occurred throughout temperate, drier parts of the country but are now restricted to the wet tropics. We used a computer modelling approach to determine whether these mosquitoes could inhabit their former range. This was done by simulating dengue mosquito populations in virtual environments that experienced 10 years of actual daily weather conditions (1998–2007) obtained for 13 locations inside and outside the current tropical range. We discovered that in areas outside the Australian wet tropics, Ae. aegypti often becomes extinct, particularly when conditions are too cool for year-round egg-laying activity, and/or too dry for eggs to hatch. Thus, despite being a global pest and disease vector, Ae. aegypti mosquitoes are naturally vulnerable to extinction in certain conditions. Such vulnerability should be exploited in vector control programs

    Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa.</p> <p>Methods</p> <p>Control and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of <it>Anopheles gambiae </it>and <it>Anopheles arabiensis</it>. Guava and honey melons, two local fruits shown to be attractive to <it>An. gambiae </it>s.l., were used to prepare solutions of Attractive Sugar Bait (ASB) and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity.</p> <p>Results</p> <p>Immediately after spraying ATSB in the treatment site, the relative abundance of female and male <it>An. gambiae </it>s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin), the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions.</p> <p>Conclusion</p> <p>This study in Mali shows that even a single application of ATSB can substantially decrease malaria vector population densities and longevity. It is likely that ATSB methods can be used as a new powerful tool for the control of malaria vectors, particularly since this approach is highly effective for mosquito control, technologically simple, inexpensive, and environmentally safe.</p

    Malaria vector research and control in Haiti: a systematic review

    Get PDF
    BACKGROUND: Haiti has a set a target of eliminating malaria by 2020. However, information on malaria vector research in Haiti is not well known. This paper presents results from a systematic review of the literature on malaria vector research, bionomics and control in Haiti. METHODS: A systematic search of literature published in French, Spanish and English languages was conducted in 2015 using Pubmed (MEDLINE), Google Scholar, EMBASE, JSTOR WHOLIS and Web of Science databases as well other grey literature sources such as USAID, and PAHO. The following search terms were used: malaria, Haiti, Anopheles, and vector control. RESULTS: A total of 132 references were identified with 40 high quality references deemed relevant and included in this review. Six references dealt with mosquito distribution, seven with larval mosquito ecology, 16 with adult mosquito ecology, three with entomological indicators of malaria transmission, eight with insecticide resistance, one with sero-epidemiology and 16 with vector control. In the last 15 years (2000–2015), there have only been four published papers and three-scientific meeting abstracts on entomology for malaria in Haiti. Overall, the general literature on malaria vector research in Haiti is limited and dated. DISCUSSION: Entomological information generated from past studies in Haiti will contribute to the development of strategies to achieve malaria elimination on Hispaniola. However it is of paramount importance that malaria vector research in Haiti is updated to inform decision-making for vector control strategies in support of malaria elimination

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated “Safe Sites”?

    Get PDF
    Aedes aegypti, the primary vector mosquito of dengue virus, typically lives near or inside human dwellings, and feeds preferentially on humans. The control of this mosquito vector remains the most important dengue prevention method. The use of chemicals at levels toxic to mosquitoes is currently the only confirmed effective adult vector control strategy with interventions usually applied following epidemic onset. However, research indicates that sub-lethal chemical approaches to prevent human-vector contact at the house level exist: contact irritancy and spatial repellency. The optimum efficacy of an intervention based on contact irritant actions of chemicals will, however, require full knowledge of variables that will influence vector resting behavior and thereby chemical uptake from treated sources. Here we characterize the resting patterns of female Ae. aegypti on two material types at various dark:light surface area coverage ratios and contrast configurations under chemical-free and treated conditions using a laboratory behavioral assay. Change in resting behavior between baseline and treatment conditions was quantified to determine potential negative effects of untreated surfaces (“safe sites”) when irritant responses are elicited. We show that treatment of preferred resting sites with known irritant compounds do not stimulate mosquitoes to move to safe sites after making contact with treated surfaces

    Characteristics of latrines in central Tanzania and their relation to fly catches.

    Get PDF
    The disposal of human excreta in latrines is an important step in reducing the transmission of diarrhoeal diseases. However, in latrines, flies can access the latrine contents and serve as a mechanical transmitter of diarrhoeal pathogens. Furthermore, the latrine contents can be used as a breeding site for flies, which may further contribute to disease transmission. Latrines do not all produce flies, and there are some which produce only a few, while others can produce thousands. In order to understand the role of the latrine in determining this productivity, a pilot study was conducted, in which fifty latrines were observed in and around Ifakara, Tanzania. The characteristics of the latrine superstructure, use of the latrine, and chemical characteristics of pit latrine contents were compared to the numbers of flies collected in an exit trap placed over the drop hole in the latrine. Absence of a roof was found to have a significant positive association (t=3.17, p=0.003) with the total number of flies collected, and temporary superstructures, particularly as opposed to brick superstructures (z=4.26, p<0.001), and increased total solids in pit latrines (z=2.57, p=0.01) were significantly associated with increased numbers of blowflies leaving the latrine. The number of larvae per gram was significantly associated with the village from which samples were taken, with the largest difference between two villages outside Ifakara (z=2.12, p=0.03). The effect of latrine superstructure (roof, walls) on fly production may indicate that improvements in latrine construction could result in decreases in fly populations in areas where they transmit diarrhoeal pathogens

    Efficacy of artificial seeds in the delivery of bioactive compounds to the seed dwelling larvae of Callosobruchus maculatus (Coleoptera: Bruchidae)

    No full text
    Artificial seeds offer an important method to assay the bioactivity of natural and synthetic compounds against insect larvae that develop within the cotyledons of seeds. Here, the efficacy of artificial seeds as a mechanism to deliver bioactive compounds to larvae of the bruchid beetle, Callosobruchus maculatus, was compared to that of black-eyed beans that had been imbibed with the same bioactive compounds: malachite green or the methanolic extract of neem (Azadirachta indica). Females laid an equivalent number of eggs on control artificial seeds in comparison with black-eyed beans, although egg-to-adult survival on artificial seeds was reduced. Manipulation of the hardness of artificial seeds influenced female oviposition decisions, with more eggs laid on the harder seeds, although seed hardness had no effect on egg-to-adult survival. Incorporation of neem extract or malachite green into the artificial seeds resulted in 100 larval mortality, while larval mortality on seeds imbibed with neem extract or malachite green was between 50 and 70 . This suggests incorporation of toxins into artificial seeds, produces a more sensitive assay of compound toxicity in comparison with the method of imbibing seeds and offers a useful method to study of seed-arthropod interactions. © 2013 Springer Science+Business Media Dordrecht
    corecore