12,634 research outputs found

    On the gravitomagnetic effects in cylindrically symmetric spacetimes

    Get PDF
    Using gyroscopes we generalize results, obtained for the gravitomagnetic clock effect in the particular case when the exterior spacetime is produced by a rotating dust cylinder, to the case when the vacuum spacetime is described by the general cylindrically symmetric Lewis spacetime. Results are contrasted with those obtained for the Kerr spacetime.Comment: 11 pages Latex, to appear in J.Math.Phy

    On the dual interpretation of zero-curvature Friedmann-Robertson-Walker models

    Get PDF
    Two possible interpretations of FRW cosmologies (perfect fluid or dissipative fluid)are considered as consecutive phases of the system. Necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system (the ''critical point '').Comment: 13 pages Latex, to appear in Class.Quantum Gra

    A search for radio pulsars and fast transients in M31 using the WSRT

    Get PDF
    We present the results of the most sensitive and comprehensive survey yet undertaken for radio pulsars and fast transients in the Andromeda galaxy (M31) and its satellites, using the Westerbork Synthesis Radio Telescope (WSRT) at a central frequency of 328 MHz. We used the WSRT in a special configuration called 8gr8 (eight-grate) mode, which provides a large instantaneous field-of-view, about 5 square degrees per pointing, with good sensitivity, long dwell times (up to 8 hours per pointing), and good spatial resolution (a few arc minutes) for locating sources. We have searched for both periodicities and single pulses in our data, aiming to detect bright, persistent radio pulsars and rotating radio transients (RRATs) of either Galactic or extragalactic origin. Our searches did not reveal any confirmed periodic signals or bright single bursts from (potentially) cosmological distances. However, we do report the detection of several single pulse events, some repeating at the same dispersion measure, which could potentially originate from neutron stars in M31. One in particular was seen multiple times, including a burst of six pulses in 2000 seconds, at a dispersion measure of 54.7 pc cm^-3, which potentially places the origin of this source outside of our Galaxy. Our results are compared to a range of hypothetical populations of pulsars and RRATs in M31 and allow us to constrain the luminosity function of pulsars in M31. They also show that, unless the pulsar population in M31 is much dimmer than in our Galaxy, there is no need to invoke any violation of the inverse square law of the distance for pulsar fluxes.Comment: 18 pages, 14 figures, 8 tables. Accepted for publication in the main journal of MNRA

    Non-spherical sources of static gravitational fields: investigating the boundaries of the no-hair theorem

    Full text link
    A new, globally regular model describing a static, non spherical gravitating object in General Relativity is presented. The model is composed by a vacuum Weyl--Levi-Civita special field - the so called gamma metric - generated by a regular static distribution of mass-energy. Standard requirements of physical reasonableness such as, energy, matching and regularity conditions are satisfied. The model is used as a toy in investigating various issues related to the directional behavior of naked singularities in static spacetimes and the blackhole (Schwarschild) limit.Comment: 10 pages, 2 figure

    A source of a quasi--spherical space--time: The case for the M--Q solution

    Full text link
    We present a physically reasonable source for an static, axially--symmetric solution to the Einstein equations. Arguments are provided, supporting our belief that the exterior space--time produced by such source, describing a quadrupole correction to the Schwarzschild metric, is particularly suitable (among known solutions of the Weyl family) for discussing the properties of quasi--spherical gravitational fields.Comment: 34 pages, 9 figures. To appear in GR

    Heat flow in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation to study the evolution of spherically symmetric fluid distributions undergoing dissipation in the form of radial heat flow. For a model which corresponds to an incompressible fluid departing from the static equilibrium, it is not possible to go far from the initial state after the emission of a small amount of energy. Initially collapsing distributions of matter are not permitted. Emission of energy can be considered as a mechanism to avoid the collapse. If the distribution collapses initially and emits one hundredth of the initial mass only the outermost layers evolve. For a model which corresponds to a highly compressed Fermi gas, only the outermost shell can evolve with a shorter hydrodynamic time scale.Comment: 5 pages, 5 figure

    Electromagnetic radiation produces frame dragging

    Full text link
    It is shown that for a generic electrovacuum spacetime, electromagnetic radiation produces vorticity of worldlines of observers in a Bondi--Sachs frame. Such an effect (and the ensuing gyroscope precession with respect to the lattice) which is a reminiscence of generation of vorticity by gravitational radiation, may be linked to the nonvanishing of components of the Poynting and the super--Poynting vectors on the planes othogonal to the vorticity vector. The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review

    Static cylindrical symmetry and conformal flatness

    Full text link
    We present the whole set of equations with regularity and matching conditions required for the description of physically meaningful static cylindrically symmmetric distributions of matter, smoothly matched to Levi-Civita vacuum spacetime. It is shown that the conformally flat solution with equal principal stresses represents an incompressible fluid. It is also proved that any conformally flat cylindrically symmetric static source cannot be matched through Darmois conditions to the Levi-Civita spacetime. Further evidence is given that when the Newtonian mass per unit length reaches 1/2 the spacetime has plane symmetry.Comment: 13 pages, Late

    Geodesics in a quasispherical spacetime: A case of gravitational repulsion

    Full text link
    Geodesics are studied in one of the Weyl metrics, referred to as the M--Q solution. First, arguments are provided, supporting our belief that this space--time is the more suitable (among the known solutions of the Weyl family) for discussing the properties of strong quasi--spherical gravitational fields. Then, the behaviour of geodesics is compared with the spherically symmetric situation, bringing out the sensitivity of the trajectories to deviations from spherical symmetry. Particular attention deserves the change of sign in proper radial acceleration of test particles moving radially along symmetry axis, close to the r=2Mr=2M surface, and related to the quadrupole moment of the source.Comment: 30 pages late

    Levi-Civita Solutions Coupled with Electromagnetic Fields

    Get PDF
    The local and global properties of the Levi-Civita (LC) solutions coupled with an electromagnetic field are studied and some limits to the vacuum LC solutions are given. By doing such limits, the physical and geometrical interpretations of the free parameters involved in the solutions are made clear. Sources for both the LC vacuum solutions and the LC solutions coupled with an electromagnetic field are studied, and in particular it is found that all the LC vacuum solutions with σ≄0\sigma \ge 0 can be produced by cylindrically symmetric thin shells that satisfy all the energy conditions, weak, dominant, and strong. When the electromagnetic field is present, the situation changes dramatically. In the case of a purely magnetic field, all the solutions with σ≄1/8\sigma \ge 1/\sqrt{8} or σ≀−1/8\sigma \le - 1/\sqrt{8} can be produced by physically acceptable cylindrical thin shells, while in the case of a purely electric field, no such shells are found for any value of σ\sigma.Comment: Typed in Revtex, including two figure
    • 

    corecore