227 research outputs found

    Identification of Regulatory T Cells in Tolerated Allografts

    Get PDF
    Induction of transplantation tolerance with certain therapeutic nondepleting monoclonal antibodies can lead to a robust state of peripheral “dominant” tolerance. Regulatory CD4+ T cells, which mediate this form of “dominant” tolerance, can be isolated from spleens of tolerant animals. To determine whether there were any extra-lymphoid sites that might harbor regulatory T cells we sought their presence in tolerated skin allografts and in normal skin. When tolerated skin grafts are retransplanted onto T cell–depleted hosts, graft-infiltrating T cells exit the graft and recolonize the new host. These colonizing T cells can be shown to contain members with regulatory function, as they can prevent nontolerant lymphocytes from rejecting fresh skin allografts, without hindrance of rejection of third party skin. Our results suggest that T cell suppression of graft rejection is an active process that operates beyond secondary lymphoid tissue, and involves the persistent presence of regulatory T cells at the site of the tolerated transplant

    Biomarkers of Transplantation Tolerance: More Hopeful than Helpful?

    Get PDF
    A major limitation to the translation of tolerogenic therapies to clinical transplantation is a lack of biomarkers that can be used as surrogate measures for predicting the successful induction of immune tolerance which would allow for the safe withdrawal of immunosuppression. We have used three different mouse models of donor specific tolerance to skin grafts together with quantitative RT-PCR to search for potential biomarkers of tolerance using criteria based on the presence or activity of regulatory T cells and antigen presenting cells (APCs) within grafts or lymphoid organs. We find that significant differences in gene expression between tolerated and rejecting grafts are observed primarily within the grafted skin and not systemically or in the draining lymph node. The pattern of gene expression within long-term surviving tolerated grafts appear very similar to syngeneic grafts, with both having low levels of T cell and APC infiltration and a bias toward relative over-expression of “regulatory-associated” genes, while allografts destined for rejection show an overall increase in both “regulatory” and “effector” cell associated transcripts. We also, however, find an increase in a large number of regulatory genes, of both innate and T cell origin, even after grafting syngeneic skin. Taken together, these findings suggest that there may be no tissue biomarkers uniquely able to predict donor antigen specific tolerance per se, but that patterns of gene expression within tolerated grafts may be similar to those found in self tissues recovering from an inflammatory insult

    Essay Regulatory T Cells: Context Matters

    Get PDF

    Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning

    Get PDF
    BACKGROUND: A major challenge in the application of marrow transplantation as a route to immunological tolerance of a transplanted organ is to achieve hematopoietic stem cell (HSC) engraftment with minimal myelosuppressive treatments. RESULTS: We here describe a combined antibody protocol which can achieve long-term engraftment with clinically relevant doses of MHC-mismatched bone marrow, without the need for myelosuppressive drugs. Although not universally applicable in all strains, we achieved reliable engraftment in permissive strains with a two-stage strategy: involving first, treatment with anti-CD8 and anti-CD4 in advance of transplantation; and second, treatment with antibodies targeting CD4, CD8 and CD40L (CD154) at the time of marrow transplantation. Long-term mixed chimerism through co-receptor and co-stimulation blockade facilitated tolerance to donor-type skin grafts, without any evidence of donor-antigen driven regulatory T cells. CONCLUSION: We conclude that antibodies targeting co-receptor and co-stimulatory molecules synergise to enable mixed hematopoietic chimerism and central tolerance, showing that neither cytoreductive conditioning nor 'megadoses' of donor bone marrow are required for donor HSC to engraft in permissive strains

    IL-10-conditioned dendritic cells, decommissioned for recruitment of adaptive immunity, elicit innate inflammatory gene products in response to danger signals

    Get PDF
    Dendritic cells (DCs) are the professional APCs of the immune system, enabling T cells to perceive and respond appropriately to potentially dangerous microbes, while also being able to maintain T cell tolerance toward self. In part, such tolerance can be determined by IL-10 released from certain types of regulatory T cells. IL-10 has previously been shown to render DCs unable to activate T cells and it has been assumed that this process represents a general block in maturation. Using serial analysis of gene expression, we show that IL-10 pretreatment of murine bone marrow-derived DCs alone causes significant changes in gene expression. Furthermore, these cells retain the ability to respond to Toll-like receptor agonists, but in a manner skewed toward the selective induction of mediators known to enhance local inflammation and innate immunity, among which we highlight a novel CXCR2 ligand, DC inflammatory protein-1. These data suggest that, while the presence of a protolerogenic and purportedly anti-inflammatory agent such as IL-10 precludes DCs from acquiring their potential as initiators of adaptive immunity, their ability to act as initiators of innate immunity in response to Toll-like receptor signaling is enhanced

    REDUCING VENTILATOR ALARMS THROUGH DECREASED RAINOUT IN VENTILATOR CIRCUITS: A BENCH STUDY

    Get PDF
    Alarm fatigue is a significant problem in healthcare, particularly in high acuity settings such as intensive care, surgery, and emergency departments. Alarms are triggered by various devices such as anesthesia machines, ventilators, patient monitors or humidifiers. Heated humidifiers (HH) used with mechanical ventilators, while necessary to prevent other complications associated with mechanical ventilators, may cause condensation in the ventilator circuit, prompting occlusion alarms indicating a risk for the patient. Technological advances in HH circuits may reduce rainout in the circuits and therefore occlusion alarms. Bench experiments measured alarms and rainout of two commercially available humidifiers (AirLife DuoTherm™ and Fisher & Paykel MR850) and four different pediatric and adult patient breathing circuits. The tests examined condensation accumulation in the circuits after 24 hours of low-, nominal-, or high-flow rates of gas at low-, nominal-, and high-ambient temperature settings. Dual-limb designs of adult- and neonate-sized circuits underwent evaluation. Data on alarms was collected for each system. Low temperature and occlusion alarms were less common in DuoTherm vs. MR850 HH circuits (6 vs. 68 alarms, respectively). DuoTherm products accumulated significantly less rainout for both circuit sizes at all ambient temperatures. In general, the set flow rate did not dramatically affect the amount of rainout for adult and infant circuits, but low versus high ambient temperatures yielded increased rainout for all circuit types (p < 0.02). The DuoTherm HH device and patient circuits developed significantly less alarms due to rainout and low temperatures compared to those from MR850 under all the conditions tested. Such reduction in patient alarms should help reduce alarm fatigue among healthcare workers in critical care settings

    CD4+ T Cell Fate Decisions Are Stochastic, Precede Cell Division, Depend on GITR Co-Stimulation, and Are Associated With Uropodium Development

    Get PDF
    During an immune response, naïve CD4+ T cells proliferate and generate a range of effector, memory, and regulatory T cell subsets, but how these processes are co-ordinated remains unclear. A traditional model suggests that memory cells use mitochondrial respiration and are survivors from a pool of previously proliferating and glycolytic, but short-lived effector cells. A more recent model proposes a binary commitment to either a memory or effector cell lineage during a first, asymmetric cell division, with each lineage able to undergo subsequent proliferation and differentiation. We used improved fixation and staining methods with imaging flow cytometry in an optimized in vitro system that indicates a third model. We found that cell fates result from stochastic decisions that depend on GITR co-stimulation and which take place before any cell division. Effector cell commitment is associated with mTORC2 signaling leading to uropodium development, while developing memory cells lose mitochondria, have a nuclear localization of NFκB and depend on TGFβ for their survival. Induced, T helper subsets and foxp3+ regulatory T cells were found in both the effector and memory cell lineages. This in vitro model of T cell differentiation is well suited to testing how manipulation of cytokine, nutrient, and other components of the microenvironment might be exploited for therapeutic purposes
    corecore