2,437 research outputs found

    Nonnormal amplification in random balanced neuronal networks

    Get PDF
    In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies on W being nonnormal, which allows the network activity to make large but fast excursions along specific directions. Here we investigate the tradeoff between nonnormal amplification and dynamical slowing in the spontaneous activity of large random neuronal networks composed of excitatory and inhibitory neurons. We use a Schur decomposition of W to separate the two amplification mechanisms. Assuming linear stochastic dynamics, we derive an exact expression for the expected amount of purely nonnormal amplification. We find that amplification is very limited if dynamical slowing must be kept weak. We conclude that, to achieve strong transient amplification with little slowing, the connectivity must be structured. We show that unidirectional connections between neurons of the same type together with reciprocal connections between neurons of different types, allow for amplification already in the fast dynamical regime. Finally, our results also shed light on the differences between balanced networks in which inhibition exactly cancels excitation, and those where inhibition dominates.Comment: 13 pages, 7 figure

    Swimming pool deck as environmental reservoir of Fusarium

    Get PDF
    While investigations on fungal contamination of swimming pools usually focus on dermatophytes, data on other potentially pathogenic molds are scarce. Here, we report the investigation of fungal colonization of the deck surrounding a hospital physical therapy swimming pool. Five series of samples from 8 sites were collected over one year from the pool surroundings. Concomitantly, 58 patients using the swimming pool were examined and samples obtained from those with suspected onychomycosis. All surface samples were positive for fungi, with Fusarium the most frequently recovered from 22 of 27 samples of sites surrounding the pool. Among the outpatients evaluated, two presented with a mixed onychomycosis from which Fusarium and Trichophyton rubrum were isolated. The questions of possible acquisition from the swimming pool area must be considered in both cases as the ungual lesions had developed within the previous three months. This warrants further studies to better understand the epidemiology of potentially pathogenic molds in areas surrounding pools in order to adopt appropriate measures to avoid contamination. This is of particular importance within medical institutions, considering the potential role of Fusarium onychomycosis as a starting point for disseminated infections in immunocompromised patient

    Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach

    Get PDF
    QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the ExB shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the ExB shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ~10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments

    The I-mode confinement regime at ASDEX Upgrade: global propert ies and characterization of strongly intermittent density fluctuations

    Get PDF
    Properties of the I­mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L­I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I­mode pedestal is peeling­ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ( ≈ ⊥ k 5 – 12 cm − 1 , with ⊥ k the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X­point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.European Union (EUROfusion 633053)European Union (EUROfusion AWP15­ENR­09/IPP­02

    Supergravity Higgs Inflation and Shift Symmetry in Electroweak Theory

    Full text link
    We present a model of inflation in a supergravity framework in the Einstein frame where the Higgs field of the next to minimal supersymmetric standard model (NMSSM) plays the role of the inflaton. Previous attempts which assumed non-minimal coupling to gravity failed due to a tachyonic instability of the singlet field during inflation. A canonical K\"{a}hler potential with \textit{minimal coupling} to gravity can resolve the tachyonic instability but runs into the η\eta-problem. We suggest a model which is free of the η\eta-problem due to an additional coupling in the K\"{a}hler potential which is allowed by the Standard Model gauge group. This induces directions in the potential which we call K-flat. For a certain value of the new coupling in the (N)MSSM, the K\"{a}hler potential is special, because it can be associated with a certain shift symmetry for the Higgs doublets, a generalization of the shift symmetry for singlets in earlier models. We find that K-flat direction has Hu0=Hd0.H_u^0=-H_d^{0*}. This shift symmetry is broken by interactions coming from the superpotential and gauge fields. This direction fails to produce successful inflation in the MSSM but produces a viable model in the NMSSM. The model is specifically interesting in the Peccei-Quinn (PQ) limit of the NMSSM. In this limit the model can be confirmed or ruled-out not just by cosmic microwave background observations but also by axion searches.Comment: matches the published version at JCA

    Assessment on experimental bacterial biofilms and in clinical practice of the efficacy of sampling solutions for microbiological testing of endoscopes

    Get PDF
    International audienceOpinions differ on the value of microbiological testing of endoscopes, which varies according to the technique used. We compared the efficacy on bacterial biofilms of sampling solutions used for the surveillance of the contamination of endoscope channels. To compare efficacy, we used an experimental model of a 48-h Pseudomonas biofilm grown on endoscope internal tubing. Sampling of this experimental biofilm was performed with a Tween 80-lecithin-based solution, saline, and sterile water. We also performed a randomized prospective study during routine clinical practice in our hospital sampling randomly with two different solutions the endoscopes after reprocessing. Biofilm recovery expressed as a logarithmic ratio of bacteria recovered on bacteria initially present in biofilm was significantly more effective with the Tween 80-lecithin-based solution than with saline solution (P = 0.002) and sterile water (P = 0.002). There was no significant difference between saline and sterile water. In the randomized clinical study, the rates of endoscopes that were contaminated with the Tween 80-lecithin-based sampling solution and the saline were 8/25 and 1/25, respectively (P = 0.02), and the mean numbers of bacteria recovered were 281 and 19 CFU/100 ml (P = 0.001), respectively. In conclusion, the efficiency and therefore the value of the monitoring of endoscope reprocessing by microbiological cultures is dependent on the sampling solutions used. A sampling solution with a tensioactive action is more efficient than saline in detecting biofilm contamination of endoscopes

    tt-Martin boundary of killed random walks in the quadrant

    Get PDF
    We compute the tt-Martin boundary of two-dimensional small steps random walks killed at the boundary of the quarter plane. We further provide explicit expressions for the (generating functions of the) discrete tt-harmonic functions. Our approach is uniform in tt, and shows that there are three regimes for the Martin boundary.Comment: 18 pages, 2 figures, to appear in S\'eminaire de Probabilit\'e
    corecore