2,166 research outputs found

    Quarterly Technical Report, Fission Time Projection Chamber Project, January2012

    Get PDF

    Fission TPC Beam Time Needs

    Get PDF

    Program Manager's Questions for LL03-LL254DP-PD03

    Get PDF

    Towards the 3D-Imaging of Sources

    Full text link
    Geometric details of a nuclear reaction zone, at the time of particle emission, can be restored from low relative-velocity particle-correlations, following imaging. Some of the source details get erased and are a potential cause of problems in the imaging, in the form of instabilities. These can be coped with by following the method of discretized optimization for the restored sources. So far it has been possible to produce 1-dimensional emission source images, corresponding to the reactions averaged over all possible spatial directions. Currently, efforts are in progress to restore angular details.Comment: Talk given at the Int. Workshop on Hot and Dense Matter in Relativistic Heavy Ion Collisions, March 24-27, 2004, Budapest; 10 pages, 6 figure

    Hamiltonian approach to QCD in Coulomb gauge - a survey of recent results

    Get PDF
    I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge fixing method and which show an improved agreement with the continuum results. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which explicitly contains the coupling of the quarks to the transverse gluons and which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. The effective potential of the Polyakov loop is evaluated from the zero-temperature variational solution. For pure Yang--Mills theory, the deconfinement phase transition is found to be second order for SU(2) and first order for SU(3), in agreement with the lattice results. The corresponding critical temperatures are found to be 275 MeV275 \, \mathrm{MeV} and 280 MeV280 \, \mathrm{MeV}, respectively. When quarks are included, the deconfinement transition turns into a cross-over. From the dual and chiral quark condensate one finds pseudo-critical temperatures of 198 MeV198 \, \mathrm{MeV} and 170 MeV170 \, \mathrm{MeV}, respectively, for the deconfinement and chiral transition.Comment: Talk given by H. Reinhardt at "5th Winter Workshop on Non-Perturbative Quantum Field Theory", 22-24 March 2017, Sophia-Antipolis, France. arXiv admin note: text overlap with arXiv:1609.09370, arXiv:1510.03286, arXiv:1607.0814

    Pressure and linear heat capacity in the superconducting state of thoriated UBe13

    Full text link
    Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large linear term in its specific heat. We show that under uniaxial pressure, the linear heat capacity increases in magnitude by more than a factor of two. The change is reversible and suggests that the linear term is an intrinsic property of the material. In addition, we find no evidence of hysteresis or of latent heat in the low-temperature and low-pressure portion of the phase diagram, showing that all transitions in this region are second order.Comment: 5 pages, 4 figure

    Quarterly Technical Report, Fission Time Projection Chamber Project, July2012

    Get PDF

    Microscopic theories for cubic and tetrahedral superconductors: application to PrOs_4Sb_{12}

    Full text link
    We examine weak-coupling theory for unconventional superconducting states of cubic or tetrahedral symmetry for arbitrary order parameters and Fermi surfaces and identify the stable states in zero applied field. We further examine the possibility of having multiple superconducting transitions arising from the weak breaking of a higher symmetry group to cubic or tetrahedral symmetry. Specifically, we consider two higher symmetry groups. The first is a weak crystal field theory in which the spin-singlet Cooper pairs have an approximate spherical symmetry. The second is a weak spin orbit coupling theory for which spin-triplet Cooper pairs have a cubic orbital symmetry and an approximate spherical spin rotational symmetry. In hexagonal UPt_3, these theories easily give rise to multiple transitions. However, we find that for cubic materials, there is only one case in which two superconducting transitions occur within weak coupling theory. This sequence of transitions does not agree with the observed properties of PrOs_4Sb_{12}. Consequently, we find that to explain two transitions in PrOs_4Sb_{12} using approximate higher symmetry groups requires a strong coupling theory. In view of this, we finally consider a weak coupling theory for which two singlet representations have accidentally nearly degenerate transition temperatures (not due to any approximate symmetries). We provide an example of such a theory that agrees with the observed properties of PrOs_4Sb_{12}.Comment: 11 pages,1 figur
    • …
    corecore