152 research outputs found

    Origin and Diversification of Land Plant CC-Type Glutaredoxins

    Get PDF
    Glutaredoxins (GRXs) are ubiquitous glutathione-dependent oxidoreductase enzymes implicated in redox homeostasis, particularly oxidative stress response. Three major classes of GRX genes exist, the CPYC, CGFS classes are present in all pro- and eukaryote species, whereas the CC-type class GRXs are specific to land plants. In the basal land plant Physcomitrella patens, only two CC-type GRXs are present, compared with 21 in Arabidopsis. In contrast, sizes of the CPYC and CGFS classes remained rather similar throughout plant evolution, raising the interesting question as to when the CC-type GRXs first originated and how and why they expanded during land plant evolution. Recent evidence suggests that CC-type GRXs may have been recruited during evolution into diverse plant-specific functions of flower development (ROXY1, ROXY2) and pathogenesis response (ROXY19/GRX480). In the present study, GRX genes from the genomes of a range of green algae and evolutionarily diverse land plant species were identified; Ostreococcus, Micromonas, Volvox, Selaginella, Vitis, Sorghum, and Brachypodium. Previously identified sequences from Chlamydomonas, Physcomitrella, Oryza, Arabidopsis, and Populus were integrated to generate a more comprehensive understanding of the forces behind the evolution of various GRX classes. The analysis indicates that the CC-type GRXs probably arose by diversification from the CPYC class, at a time coinciding with colonization of land by plants. This strong differential expansion of the CC-type class occurred exclusively in the angiosperms, mainly through paleopolyploidy duplication events shortly after the monocot–eudicot split, and more recently through multiple tandem duplications that occurred independently in five investigated angiosperm lineages. The presented data suggest that following duplications, subfunctionalization, and subsequent neofunctionalization likely facilitated the sequestration of land plant-specific CC-type GRXs into novel functions such as development and pathogenesis response

    Investigating the complex genetic architecture of ankle-brachial index, a measure of peripheral arterial disease, in non-Hispanic whites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerotic peripheral arterial disease (PAD) affects 8–10 million people in the United States and is associated with a marked impairment in quality of life and an increased risk of cardiovascular events. Noninvasive assessment of PAD is performed by measuring the ankle-brachial index (ABI). Complex traits, such as ABI, are influenced by a large array of genetic and environmental factors and their interactions. We attempted to characterize the genetic architecture of ABI by examining the main and interactive effects of individual single nucleotide polymorphisms (SNPs) and conventional risk factors.</p> <p>Methods</p> <p>We applied linear regression analysis to investigate the association of 435 SNPs in 112 positional and biological candidate genes with ABI and related physiological and biochemical traits in 1046 non-Hispanic white, hypertensive participants from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. The main effects of each SNP, as well as SNP-covariate and SNP-SNP interactions, were assessed to investigate how they contribute to the inter-individual variation in ABI. Multivariable linear regression models were then used to assess the joint contributions of the top SNP associations and interactions to ABI after adjustment for covariates. We reduced the chance of false positives by 1) correcting for multiple testing using the false discovery rate, 2) internal replication, and 3) four-fold cross-validation.</p> <p>Results</p> <p>When the results from these three procedures were combined, only two SNP main effects in <it>NOS3</it>, three SNP-covariate interactions (<it>ADRB2 </it>Gly 16 – lipoprotein(a) and <it>SLC4A5 </it>– diabetes interactions), and 25 SNP-SNP interactions (involving SNPs from 29 different genes) were significant, replicated, and cross-validated. Combining the top SNPs, risk factors, and their interactions into a model explained nearly 18% of variation in ABI in the sample. SNPs in six genes (<it>ADD2, ATP6V1B1, PRKAR2B, SLC17A2, SLC22A3, and TGFB3</it>) were also influencing triglycerides, C-reactive protein, homocysteine, and lipoprotein(a) levels.</p> <p>Conclusion</p> <p>We found that candidate gene SNP main effects, SNP-covariate and SNP-SNP interactions contribute to the inter-individual variation in ABI, a marker of PAD. Our findings underscore the importance of conducting systematic investigations that consider context-dependent frameworks for developing a deeper understanding of the multidimensional genetic and environmental factors that contribute to complex diseases.</p

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    Hypertension and maternal-fetal conflict during placental malaria.

    Get PDF
    BACKGROUND: Malaria and hypertension are major causes of maternal mortality in tropical countries, especially during first pregnancies, but evidence for a relationship between these syndromes is contradictory. METHODS AND FINDINGS: In a cross-sectional survey of Tanzanian parturients, the rate of hypertension was similar in placental malaria (PM)-positive (11/85 = 13%) and PM-negative (73/602 = 12%) individuals. However, we found that PM was associated with hypertension in first-time mothers aged 18-20 y but not other mothers. Hypertension was also associated with histologic features of chronic malaria, which is common in first-time mothers. Levels of soluble vascular endothelial growth factor receptor 1 (sVEGFR1), a preeclampsia biomarker, were elevated in first-time mothers with either PM, hypertension, or both, but levels were not elevated in other mothers with these conditions. In first-time mothers with PM, the inflammatory mediator vascular endothelial growth factor (VEGF) was localized to maternal macrophages in the placenta, while sVEGFR1, its soluble inhibitor, was localized to the fetal trophoblast. CONCLUSIONS: The data suggest that maternal-fetal conflict involving the VEGF pathway occurs during PM, and that sVEGFR1 may be involved in the relationship between chronic PM and hypertension in first-time mothers. Because placental inflammation causes poor fetal outcomes, we hypothesize that fetal mechanisms that promote sVEGFR1 expression may be under selective pressure during first pregnancies in malaria-endemic areas

    Retrospective evaluation of bleeding tendency and simultaneous thrombin and plasmin generation in patients with rare bleeding disorders.

    No full text
    Item does not contain fulltextRare bleeding disorders (RBDs) are a heterogeneous group of diseases with varying bleeding tendency, only partially explained by their laboratory phenotype. We analysed the separate groups of RBD abnormalities, and we investigated retrospectively whether the novel haemostasis assay (NHA) was able to differentiate between bleeding tendency. We have performed simultaneous thrombin generation (TG) and plasmin generation (PG) measurements in 41 patients affected with deficiencies in prothrombin, factor (F) V, FVII, FX, FXIII and fibrinogen. Parameters of the NHA were classified based on (major or minor) bleeding tendency. Patients with deficiencies in coagulation propagation (FII, FV and FX) and major type of bleedings had diminished TG (expressed as AUC) below 20% of control. FVII deficient patients only had prolonged thrombin lag-time ratio of 1.6 +/- 0.2 (P < 0.05) and normal AUC (92-125%). Afibrinogenemic patients demonstrated PG of 2-29% of normal and appeared to correlate with the type of mutation. Thrombin peak-height (57 +/- 16%) was reduced (not significant) in these patients and AUC was comparable to the reference (102 +/- 27%). FXIII-deficient plasmas resulted in a reduced thrombin peak-height of 59 +/- 13% (P < 0.05) and normal AUC (90 +/- 14%). Thrombin peak-height (P < 0.01) and plasmin potential (P < 0.05) were lower in the major bleeders compared with the minor bleeders. These results provided distinct TG and PG curves for each individual abnormality and differentiation of bleeding tendency was observed for thrombin and PG parameters. Prospective studies are warranted to confirm these retrospective results.1 juli 201
    corecore