3,847 research outputs found

    A_4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles

    Full text link
    We propose a spontaneous A_4 flavour symmetry breaking scheme to understand the observed pattern of quark and neutrino mixing. The fermion mass eigenvalues are arbitrary, but the mixing angles are constrained in such a way that the overall patterns are explained while also leaving sufficient freedom to fit the detailed features of the observed values, including CP violating phases. The scheme realises the proposal of Low and Volkas to generate zero quark mixing and tribimaximal neutrino mixing at tree-level, with deviations from both arising from small corrections after spontaneous A_4 breaking. In the neutrino sector, the breaking is A_4 --> Z_2, while in the quark and charged-lepton sectors it is A_4 --> Z_3 = C_3. The full theory has A_4 completely broken, but the two different unbroken subgroups in the two sectors force the dominant mixing patterns to be as stated above. Radiative effects within each sector are shown to deviate neutrino mixing from tribimaximal, while maintaining zero quark mixing. Interactions between the two sectors -- "cross-talk" -- induce nonzero quark mixing, and additional deviation from tribimaximal neutrino mixing. We discuss the vacuum alignment challenge the scenario faces, and suggest three generic ways to approach the problem. We follow up one of those ways by sketching how an explicit model realising the symmetry breaking structure may be constructed.Comment: 14 pages, no figures; v3: Section 5 rewritten to correct an error; new section added to the appendix; added references; v4: minor change to appendix C, version to be published by JHE

    Minimal Modification To The Tri-bimaximal Neutrino Mixing

    Full text link
    Current experimental data on neutrino oscillations are consistent with the tri-bimaximal mixing. If future experimental data will determine a non-zero Ve3V_{e3} and/or find CP violations in neutrino oscillations, there is the need to modify the mixing pattern. We find that a simple neutrino mass matrix, resulting from A4A_4 family symmetry breaking with residual Z3Z_3 and Z2Z_2 discrete symmetries respectively for the Higgs sectors generating the charged lepton and neutrino mass matrices, can satisfy the required modifications. The neutrino mass matrix is minimally modified with just one additional complex parameter compared with the one producing the tri-bimaximal mixing. In this case, the CP violating Jarlskog factor JJ has a simple form (āˆ£Jāˆ£=āˆ£Ve1Ve3āˆ£/23|J|=|V_{e1}V_{e3}|/2\sqrt{3} for real neutrino mass matrix), and also VĪ¼i=1/3V_{\mu i} = 1/\sqrt{3}. We also discuss how this mixing matrix can be tested experimentally.Comment: Latex 11 pages with no figures. References adde

    A robust semantics hides fewer errors

    Get PDF
    In this paper we explore how formal models are interpreted and to what degree meaning is captured in the formal semantics and to what degree it remains in the informal interpretation of the semantics. By applying a robust approach to the definition of refinement and semantics, favoured by the event-based community, to state-based theory we are able to move some aspects from the informal interpretation into the formal semantics

    Spatially resolved ultrafast precessional magnetization reversal

    Full text link
    Spatially resolved measurements of quasi-ballistic precessional magnetic switching in a microstructure are presented. Crossing current wires allow detailed study of the precessional switching induced by coincident longitudinal and transverse magnetic field pulses. Though the response is initially spatially uniform, dephasing occurs leading to nonuniformity and transient demagnetization. This nonuniformity comes in spite of a novel method for suppression of end domains in remanence. The results have implications for the reliability of ballistic precessional switching in magnetic devices.Comment: 17 pages (including 4 figures), submitted to Phys. Rev. Let

    Medium-induced parton splitting kernels from Soft Collinear Effective Theory with Glauber gluons

    Full text link
    We derive the splitting kernels for partons produced in large Q2Q^2 scattering processes that subsequently traverse a region of strongly-interacting matter using a recently-developed effective theory \SCETG. We include all corrections beyond the small-xx approximation, consistent with the power counting of \SCETG. We demonstrate how medium recoil, geometry and expansion scenarios, and phase space cuts can be implemented numerically for phenomenological applications. For the simplified case of infinite transverse momentum kinematics and a uniform medium, we provide closed-form analytic results that can be used to validate the numerical simulations.Comment: 9 pages, 3 figure

    Three-Particle Correlations from Parton Cascades in Au+Au Collisions

    Get PDF
    We present a study of three-particle correlations among a trigger particle and two associated particles in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV using a multi-phase transport model (AMPT) with both partonic and hadronic interactions. We found that three-particle correlation densities in different angular directions with respect to the triggered particle (`center', `cone', `deflected', `near' and `near-away') increase with the number of participants. The ratio of `deflected' to `cone' density approaches to 1.0 with the increasing of number of participants, which indicates that partonic Mach-like shock waves can be produced by strong parton cascades in central Au+Au collisions.Comment: 9 pages, 6 figures; Final version to appear in Physics Letters

    Di-hadron azimuthal correlation and Mach-like cone structure in parton/hadron transport model

    Full text link
    In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3<pTtrig<63< p^{trig}_T< 6 GeV/cc and 0.15<pTassoc<30.15< p_{T}^{assoc} < 3 GeV/cc (soft), or 2.5<pTtrig<2.5<p^{trig}_T< 4 GeV/cc and 1<pTassoc<2.51< p_{T}^{assoc} < 2.5 GeV/cc (hard) in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV. A Mach-like structure has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process can not be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of pTp_{T} decrease, whileas the increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario.Comment: 9 pages, 5 figures; Physics Letters B 641, 362-367 (2006

    Unifying Theories of Reactive Design Contracts

    Get PDF
    Design-by-contract is an important technique for model-based design in which a composite system is specified by a collection of contracts that specify the behavioural assumptions and guarantees of each component. In this paper, we describe a unifying theory for reactive design contracts that provides the basis for modelling and verification of reactive systems. We provide a language for expression and composition of contracts that is supported by a rich calculational theory. In contrast with other semantic models in the literature, our theory of contracts allow us to specify both the evolution of state variables and the permissible interactions with the environment. Moreover, our model of interaction is abstract, and supports, for instance, discrete time, continuous time, and hybrid computational models. Being based in Unifying Theories of Programming (UTP), our theory can be composed with further computational theories to support semantics for multi-paradigm languages. Practical reasoning support is provided via our proof framework, Isabelle/UTP, including a proof tactic that reduces a conjecture about a reactive program to three predicates, symbolically characterising its assumptions and guarantees about intermediate and final observations. This allows us to verify programs with a large or infinite state space. Our work advances the state-of-the-art in semantics for reactive languages, description of their contractual specifications, and compositional verification

    Thermodynamics of deformed AdS5_5 model with a positive/negative quadratic correction in graviton-dilaton system

    Full text link
    By solving the Einstein equations of the graviton coupling with a real scalar dilaton field, we establish a general framework to self-consistently solve the geometric background with black-hole for any given phenomenological holographic models. In this framwork, we solve the black-hole background, the corresponding dilaon field and the dilaton potential for the deformed AdS5_5 model with a positive/negative quadratic correction. We systematically investigate the thermodynamical properties of the deformed AdS5_5 model with a positive and negative quadratic correction, respectively, and compare with lattice QCD on the results of the equation of state, the heavy quark potential, the Polyakov loop and the spatial Wilson loop. We find that the bulk thermodynamical properties are not sensitive to the sign of the quadratic correction, and the results of both deformed holographic QCD models agree well with lattice QCD result for pure SU(3) gauge theory. However, the results from loop operators favor a positive quadratic correction, which agree well with lattice QCD result. Especially, the result from the Polyakov loop excludes the model with a negative quadratic correction in the warp factor of AdS5{\rm AdS}_5.Comment: 26 figures,36 pages,V.3: an appendix,more equations and references added,figures corrected,published versio
    • ā€¦
    corecore