39 research outputs found
Circulating levels of insulin-like growth factor-I (IGF-I) correlate with disease status in leprosy
<p>Abstract</p> <p>Background</p> <p>Caused by <it>Mycobacterium leprae </it>(ML), leprosy presents a strong immune-inflammatory component, whose status dictates both the clinical form of the disease and the occurrence of reactional episodes. Evidence has shown that, during the immune-inflammatory response to infection, the growth hormone/insulin-like growth factor-I (GH/IGF-I) plays a prominent regulatory role. However, in leprosy, little, if anything, is known about the interaction between the immune and neuroendocrine systems.</p> <p>Methods</p> <p>In the present retrospective study, we measured the serum levels of IGF-I and IGBP-3, its major binding protein. These measurements were taken at diagnosis in nonreactional borderline tuberculoid (NR BT), borderline lepromatous (NR BL), and lepromatous (NR LL) leprosy patients in addition to healthy controls (HC). LL and BL patients who developed reaction during the course of the disease were also included in the study. The serum levels of IGF-I, IGFBP-3 and tumor necrosis factor-alpha (TNF-α) were evaluated at diagnosis and during development of reversal (RR) or erythema nodosum leprosum (ENL) reaction by the solid phase, enzyme-labeled, chemiluminescent-immunometric method.</p> <p>Results</p> <p>The circulating IGF-I/IGFBP-3 levels showed significant differences according to disease status and occurrence of reactional episodes. At the time of leprosy diagnosis, significantly lower levels of circulating IGF-I/IGFBP-3 were found in NR BL and NR LL patients in contrast to NR BT patients and HCs. However, after treatment, serum IGF-I levels in BL/LL patients returned to normal. Notably, the levels of circulating IGF-I at diagnosis were low in 75% of patients who did not undergo ENL during treatment (NR LL patients) in opposition to the normal levels observed in those who suffered ENL during treatment (R LL patients). Nonetheless, during ENL episodes, the levels observed in RLL sera tended to decrease, attaining similar levels to those found in NR LL patients. Interestingly, IGF-I behaved contrary to what was observed during RR episodes in R BL patients.</p> <p>Conclusions</p> <p>Our data revealed important alterations in the IGF system in relation to the status of the host immune-inflammatory response to ML while at the same time pointing to the circulating IGF-I/IGFBP-3 levels as possible predictive biomarkers for ENL in LL patients at diagnosis.</p
Global Protection and the Health Impact of Migration Interception
In the fourth article in a six-part PLoS Medicine series on Migration & Health, Zachary Steel and colleagues discuss the interception phase of migration and the specific health risks and policy needs associated with this phase
Small Interfering RNA Targeted to IGF-IR Delays Tumor Growth and Induces Proinflammatory Cytokines in a Mouse Breast Cancer Model
Insulin-like growth factor I (IGF-I) and its type I receptor (IGF-IR) play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs) for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2′-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD). Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2′-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines