2,966 research outputs found

    Detection of vehicle occlusion using a generalized deformable model

    Get PDF
    This paper presents a vehicle occlusion detection algorithm based on a generalized deformable model. A 3D solid cuboid model with up to six vertices is employed to fit any vehicle images, by varying the vertices for a best fit. The advantage of using such a model is that the number of parameterized vertices is small which can be easily deformed. Occlusion is detected by recording the changes in the Area Ratio and the dimensions of the generalized deformable model. Our tests show that the new modeling algorithm is effective in detecting vehicle occlusion.published_or_final_versio

    Performance analysis of the doubly-linked list protocol family for distributed shared memory systems

    Get PDF
    The 2nd International Conference on Algorithms and Architectures for Parallel Processing, Singapore, 11-13 June 1996The doubly-linked list (DLL) protocol provides a memory efficient, scalable, high-performance and yet easy to implement method to maintain memory coherence in distributed shared memory (DSM) systems. In this paper, the performance analysis of the DLL family of protocols is presented. Theoretically, the DLL protocol with stable owners has the shortest remote memory access latency among the DLL protocol family. According to the simulated performance evaluation, the DLL-S protocol is 65.7% faster than the DDM algorithm for the linear equation solver; and is 16.5% faster for the matrix multiplier. From the trend of the performance figures, it is predicted that the improvement in performance due to the DLL-S protocol will be considerably greater when a larger number of processors are used, indicating that the DLL-S protocol is also the most scalable of the protocols tested.published_or_final_versio

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels

    Get PDF
    Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions

    Deep forecasting of translational impact in medical research.

    Get PDF
    The value of biomedical research-a $1.7 trillion annual investment-is ultimately determined by its downstream, real-world impact, whose predictability from simple citation metrics remains unquantified. Here we sought to determine the comparative predictability of future real-world translation-as indexed by inclusion in patents, guidelines, or policy documents-from complex models of title/abstract-level content versus citations and metadata alone. We quantify predictive performance out of sample, ahead of time, across major domains, using the entire corpus of biomedical research captured by Microsoft Academic Graph from 1990-2019, encompassing 43.3 million papers. We show that citations are only moderately predictive of translational impact. In contrast, high-dimensional models of titles, abstracts, and metadata exhibit high fidelity (area under the receiver operating curve [AUROC] > 0.9), generalize across time and domain, and transfer to recognizing papers of Nobel laureates. We argue that content-based impact models are superior to conventional, citation-based measures and sustain a stronger evidence-based claim to the objective measurement of translational potential

    Video-supported Analysis of Beggiatoa Filament Growth, Breakage, and Movement

    Get PDF
    A marine Beggiatoa sp. was cultured in semi-solid agar with opposing oxygen-sulfide gradients. Growth pattern, breakage of filaments for multiplication, and movement directions of Beggiatoa filaments in the transparent agar were investigated by time-lapse video recording. The initial doubling time of cells was 15.7 ± 1.3 h (mean ± SD) at room temperature. Filaments grew up to an average length of 1.7 ± 0.2 mm, but filaments of up to approximately 6 mm were also present. First breakages of filaments occurred approximately 19 h after inoculation, and time-lapse movies illustrated that a parent filament could break into several daughter filaments within a few hours. In >20% of the cases, filament breakage occurred at the tip of a former loop. As filament breakage is accomplished by the presence of sacrificial cells, loop formation and the presence of sacrificial cells must coincide. We hypothesize that sacrificial cells enhance the chance of loop formation by interrupting the communication between two parts of one filament. With communication interrupted, these two parts of one filament can randomly move toward each other forming the tip of a loop at the sacrificial cell

    Cosmological Birefringence: an Astrophysical test of Fundamental Physics

    Full text link
    We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201

    Solar-type dynamo behaviour in fully convective stars without a tachocline

    Get PDF
    In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016). Author's version, including Method
    corecore