499 research outputs found
Recommended from our members
Urban signals in high-resolution weather and climate simulations: role of urban land-surface characterisation
Two urban schemes within the Joint UK Land Environment Simulator
(JULES) are evaluated offline against multi-year flux observations in the densely
built-up city centre of London and in suburban Swindon (UK): (i) the 1-tile slab
model, used in climate simulations, (ii) the 2-tile canopy model MORUSES (Met
Office–Reading Urban Surface Exchange Scheme), used for numerical weather pre-
diction over the UK. Offline, both models perform better at the suburban site,
where differences between the urban schemes are less pronounced due to larger
vegetation fractions. At both sites, the outgoing short- and longwave radiation is
more accurately represented than the turbulent heat fluxes. The seasonal varia-
tions of model skill are large in London, where the sensible heat flux in autumn and
winter is strongly under-predicted if the large city-centre magnitudes of anthro-
pogenic heat emissions are not represented. The delayed timing of the sensible heat flux in the 1-tile model in London results in large negative bias in the morning.
The partitioning of the urban surface into canyon and roof in MORUSES improves
this as the roof-tile is modelled with a very low thermal inertia, but phase and
amplitude of the gridbox-averaged flux critically depend on accurate knowledge of
the plan-area fractions of streets and buildings. Not representing non-urban land-
cover (e.g. vegetation, inland water) in London results in severely under-predicted
latent heat fluxes. Control runs demonstrate that the skill of both models can be
greatly improved by providing accurate land-cover and morphology information
and using representative anthropogenic heat emissions, which is essential if the
model output is intended to inform integrated urban services
Dynamic Range Compression in the Honey Bee Auditory System toward Waggle Dance Sounds
Honey bee foragers use a “waggle dance” to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300–320 scolopidia connected with about 48 cuticular “knobs” around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265–350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the “waggle dance” sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250–300 Hz sound generated during “waggle dance” from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system
Combining motion analysis and microfluidics--a novel approach for detecting whole-animal responses to test substances.
Small, early life stages, such as zebrafish embryos are increasingly used to assess the biological effects of chemical compounds in vivo. However, behavioural screens of such organisms are challenging in terms of both data collection (culture techniques, drug delivery and imaging) and data evaluation (very large data sets), restricting the use of high throughput systems compared to in vitro assays. Here, we combine the use of a microfluidic flow-through culture system, or BioWell plate, with a novel motion analysis technique, (sparse optic flow - SOF) followed by spectral analysis (discrete Fourier transformation - DFT), as a first step towards automating data extraction and analysis for such screenings. Replicate zebrafish embryos housed in a BioWell plate within a custom-built imaging system were subject to a chemical exposure (1.5% ethanol). Embryo movement was videoed before (30 min), during (60 min) and after (60 min) exposure and SOF was then used to extract data on movement (angles of rotation and angular changes to the centre of mass of embryos). DFT was subsequently used to quantify the movement patterns exhibited during these periods and Multidimensional Scaling and ANOSIM were used to test for differences. Motion analysis revealed that zebrafish had significantly altered movements during both the second half of the alcohol exposure period and also the second half of the recovery period compared to their pre-treatment movements. Manual quantification of tail flicking revealed the same differences between exposure-periods as detected using the automated approach. However, the automated approach also incorporates other movements visible in the organism such as blood flow and heart beat, and has greater power to discern environmentally-driven changes in the behaviour and physiology of organisms. We suggest that combining these technologies could provide a highly efficient, high throughput assay, for assessing whole embryo responses to various drugs and chemicals
PISA. The effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute stroke: Protocol for a phase II double-blind randomised placebo-controlled trial [ISRCTN98608690]
BACKGROUND: During the first days after stroke, one to two fifths of the patients develop fever or subfebrile temperatures. Body temperature is a strong prognostic factor after stroke. Pharmacological reduction of temperature in patients with acute ischaemic stroke may improve their functional outcome. Previously, we studied the effect of high dose (6 g daily) and low dose (3 g daily) paracetamol (acetaminophen) in a randomised placebo-controlled trial of 75 patients with acute ischemic stroke. In the high-dose paracetamol group, mean body temperature at 12 and 24 hours after start of treatment was 0.4°C lower than in the placebo group. The effect of ibuprofen, another potent antipyretic drug, on body-core temperature in normothermic patients has not been studied. AIM: The aim of the present trial is to study the effects of high-dose paracetamol and ibuprofen on body temperature in patients with acute ischaemic stroke, and to study the safety of these treatments. DESIGN: Seventy-five (3 × 25) patients with acute ischaemic stroke confined to the anterior circulation will be randomised to treatment with either: 400 mg ibuprofen, 1000 mg acetaminophen, or with placebo 6 times daily during 5 days. Body-temperatures will be measured with a rectal electronic thermometer at the start of treatment and after 24 hours. An infrared tympanic thermometer will be used to monitor body temperature at 2-hour intervals during the first 24 hours and at 12-hour intervals thereafter. The primary outcome measure will be rectal temperature at 24 hours after the start of treatment. The study results will be analysed on an intent-to-treat basis, but an on-treatment analysis will also be performed. No formal interim analysis will be carried out
Expression of emotional arousal in two different piglet call types
Humans as well as many animal species reveal their emotional state in their voice. Vocal features show strikingly similar correlation patterns with emotional states across mammalian species, suggesting that the vocal expression of emotion follows highly conserved signalling rules. To fully understand the principles of emotional signalling in mammals it is, however, necessary to also account for any inconsistencies in the way that they are acoustically encoded. Here we investigate whether the expression of emotions differs between call types produced by the same species. We compare the acoustic structure of two common piglet calls—the scream (a distress call) and the grunt (a contact call)—across three levels of arousal in a negative situation. We find that while the central frequency of calls increases with arousal in both call types, the amplitude and tonal quality (harmonic-to-noise ratio) show contrasting patterns: as arousal increased, the intensity also increased in screams, but not in grunts, while the harmonicity increased in screams but decreased in grunts. Our results suggest that the expression of arousal depends on the function and acoustic specificity of the call type. The fact that more vocal features varied with arousal in scream calls than in grunts is consistent with the idea that distress calls have evolved to convey information about emotional arousal
Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector
This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}4.6\;{\rm f}{{{\rm b}}^{-1}}{{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}|\eta |\lt 1.9{{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade
Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-angiotensin system to the preventive treatment of aneurysm disease
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …