4,430 research outputs found
Peering beyond IRAS: The 100 to 350 micron dust emission from galaxies
Several arguments can be made to study the continuum emission from dust in galaxies at wavelengths between the cutoff of the Infrared Astronomy Satellite (IRAS) survey (about 100 microns) and the shortest wavelength that is commonly accessible from the ground (about 350 microns). Some theoretical work (see the summary by Cox and Mezger 1989) indicates that there are very cool (T sub d less than or equal to 25 K) components to the dust emission that emit primarily at wavelengths between 100 and 250 microns. In fact, a significant fraction of the total luminosity, representing a large fraction of the dust mass in some types of galaxies, is emitted at long far-infrared wavelengths. In such cases, the cool dust must play a major role in regulation of the energy balance of the Interstellar Medium (ISM) and in shielding the cores of neutral clouds
Critical current degradation in HTS wires due to cyclic mechanical strain
HTS wires, which may be used in many devices such as magnets and rotating machines, may be subjected to mechanical strains from electromagnetic, thermal and centripetal forces. In some applications these strains will be repeated several thousand times during the lifetime of the device. We have measured critical current degradation due to repeated strain cycles for both compressive and tensile strains. Results for BSCCO-2223 HTS conductor samples are presented for strain values up to 0.5% and cycle numbers up to and beyond 10/sup 4/
Approximate Flavor Symmetries in the Lepton Sector
Approximate flavor symmetries in the quark sector have been used as a handle
on physics beyond the Standard Model. Due to the great interest in neutrino
masses and mixings and the wealth of existing and proposed neutrino experiments
it is important to extend this analysis to the leptonic sector. We show that in
the see-saw mechanism, the neutrino masses and mixing angles do not depend on
the details of the right-handed neutrino flavor symmetry breaking, and are
related by a simple formula. We propose several ans\"{a}tze which relate
different flavor symmetry breaking parameters and find that the MSW solution to
the solar neutrino problem is always easily fit. Further, the oscillation is unlikely to solve the atmospheric neutrino problem
and, if we fix the neutrino mass scale by the MSW solution, the neutrino masses
are found to be too small to close the Universe.Comment: 12 pages (no figures), LBL-3459
High angular resolution mm- and submm-observations of dense molecular gas in M82
Researchers observed CO(7-6), CO(3-2), HCN(3-2) and HCO+(3-2) line emission toward the starburst nucleus of M82 and have obtained an upper limit to H13CN(3-2). These are the first observations of the CO(7-6), HCN(3-2) and HCO+(3-2) lines in any extragalactic source. Researchers took the CO(7-6) spectrum in January 1988 at the Infrared Telescope Facility (IRTF) with the Max Planck Institute for Extraterrestrial Physics/Univ. of California, Berkeley 800 GHz Heterodyne Receiver. In March 1989 researchers used the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope to observe the CO(3-2) line with the new MPE 350 GHz Superconductor Insulator Superconductor (SIS) receiver and the HCN(3-2) and HCO+(3-2) lines with the (IRAM) 230 GHz SIS receiver (beam 12" FWHM, Blundell et al. 1988). The observational parameters are summarized
- …