127 research outputs found

    Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    Get PDF
    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 microns) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and D2O ices. The D2O mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 microns. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ~50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 micron spectral region, taking into account the strength of the 3.25 micron CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget, and account for 2%-9% of the unidentified absorption in the 5-8 micron region.Comment: Accepted for publication in ApJ on 14 Feb 201

    Observed Variability at 1um and 4um in the Y0 Brown Dwarf WISEP J173835.52+273258.9

    Get PDF
    We have monitored photometrically the Y0 brown dwarf WISEP J173835.52+273258.9 (W1738) at both near- and mid-infrared wavelengths. This ~1 Gyr-old 400K dwarf is at a distance of 8pc and has a mass around 5 M_Jupiter. We observed W1738 using two near-infrared filters at lambda~1um, Y and J, on Gemini observatory, and two mid-infrared filters at lambda~4um, [3.6] and [4.5], on the Spitzer observatory. Twenty-four hours were spent on the source by Spitzer on each of June 30 and October 30 2013 UT. Between these observations, around 5 hours were spent on the source by Gemini on each of July 17 and August 23 2013 UT. The mid-infrared light curves show significant evolution between the two observations separated by four months. We find that a double sinusoid can be fit to the [4.5] data, where one sinusoid has a period of 6.0 +/- 0.1 hours and the other a period of 3.0 +/- 0.1 hours. The near-infrared observations suggest variability with a ~3.0 hour period, although only at a <~2 sigma confidence level. We interpret our results as showing that the Y dwarf has a 6.0 +/- 0.1 hour rotation period, with one or more large-scale surface features being the source of variability. The peak-to-peak amplitude of the light curve at [4.5] is 3%. The amplitude of the near-infrared variability, if real, may be as high as 5 to 30%. Intriguingly, this size of variability and the wavelength dependence can be reproduced by atmospheric models that include patchy KCl and Na_2S clouds and associated small changes in surface temperature. The small number of large features, and the timescale for evolution of the features, is very similar to what is seen in the atmospheres of the solar system gas giants.Comment: Accepted by ApJ July 26 2016. Twenty-six pages include 8 Figures and 5 Table

    Topos Theory and Consistent Histories: The Internal Logic of the Set of all Consistent Sets

    Get PDF
    A major problem in the consistent-histories approach to quantum theory is contending with the potentially large number of consistent sets of history propositions. One possibility is to find a scheme in which a unique set is selected in some way. However, in this paper we consider the alternative approach in which all consistent sets are kept, leading to a type of `many world-views' picture of the quantum theory. It is shown that a natural way of handling this situation is to employ the theory of varying sets (presheafs) on the space \B of all Boolean subalgebras of the orthoalgebra \UP of history propositions. This approach automatically includes the feature whereby probabilistic predictions are meaningful only in the context of a consistent set of history propositions. More strikingly, it leads to a picture in which the `truth values', or `semantic values' of such contextual predictions are not just two-valued (\ie true and false) but instead lie in a larger logical algebra---a Heyting algebra---whose structure is determined by the space \B of Boolean subalgebras of \UP.Comment: 28 pages, LaTe

    The K2-3 system revisited: testing photoevaporation and core-powered mass loss with three small planets spanning the radius valley

    Full text link
    Multi-planet systems orbiting M dwarfs provide valuable tests of theories of small planet formation and evolution. K2-3 is an early M dwarf hosting three small exoplanets (1.5-2.0 Earth radii) at distances of 0.07-0.20 AU. We measure the high-energy spectrum of K2-3 with HST/COS and XMM-Newton, and use empirically-driven estimates of Ly-alpha and extreme ultraviolet flux. We use EXOFASTv2 to jointly fit radial velocity, transit, and SED data. This constrains the K2-3 planet radii to 4% uncertainty and the masses of K2-3b and c to 13% and 30%, respectively; K2-3d is not detected in RV measurements. K2-3b and c are consistent with rocky cores surrounded by solar composition envelopes (mass fractions of 0.36% and 0.07%), H2O envelopes (55% and 16%), or a mixture of both. However, based on the high-energy output and estimated age of K2-3, it is unlikely that K2-3b and c retain solar composition atmospheres. We pass the planet parameters and high-energy stellar spectrum to atmospheric models. Dialing the high-energy spectrum up and down by a factor of 10 produces significant changes in trace molecule abundances, but not at a level detectable with transmission spectroscopy. Though the K2-3 planets span the small planet radius valley, the observed system architecture cannot be readily explained by photoevaporation or core-powered mass loss. We instead propose 1) the K2-3 planets are all volatile-rich, with K2-3d having a lower density than typical of super-Earths, and/or 2) the K2-3 planet architecture results from more stochastic processes such as planet formation, planet migration, and impact erosion.Comment: 15 pages, 7 figure, published in AJ, HLSPs at https://archive.stsci.edu/hlsp/mstarpanspe

    Episodic Occurrence of Favourable Weather Constrains Recovery of a Cold Desert Shrubland After Fire

    Get PDF
    Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of episodic establishment on population recovery. We collected A. tridentata stem samples from 33 plots in 12 prescribed fire sites that burned 8–11 years before sampling. We determined individual establishment years using annual growth rings. We measured seasonal soil environmental conditions at the study sites and asked if these conditions predicted annual establishment density. We then evaluated whether establishment patterns could be predicted by site-level climate or dominant subspecies. Finally, we tested the effect of the magnitude and frequency of post-fire establishment episodes on long-term population recovery. Annual post-fire recruitment of A. tridentata was driven by the episodic availability of spring soil moisture. Annual establishment was highest with wetter spring soils (relative influence [RI] = 19.4%) and later seasonal dry-down (RI = 11.8%) in the year of establishment. Establishment density declined greatly 4 to 5 years after fire (RI = 17.1%). Post-fire establishment patterns were poorly predicted by site-level mean climate (marginal R2 ≤ 0.18) and dominant subspecies (marginal R2 ≤ 0.43). Population recovery reflected the magnitude, but not the frequency, of early post-fire establishment pulses. Post-fire A. tridentata density and cover (measured 8–11 years after fire) were more strongly related to the magnitude of the largest establishment pulse than to establishment frequency, suggesting that population recovery may occur with a single favourable establishment year. Synthesis and applications. This study demonstrates the importance of episodic periods of favourable weather for long-term plant population recovery following disturbance. Management strategies that increase opportunities for seed availability to coincide with favourable weather conditions, such as retaining unburned patches or repeated seeding treatments, can improve restoration outcomes in high-priority areas

    Bright Opportunities for Atmospheric Characterization of Small Planets: Masses and Radii of K2-3 b, c, and d and GJ3470 b from Radial Velocity Measurements and Spitzer Transits

    Full text link
    We report improved masses, radii, and densities for four planets in two bright M-dwarf systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Supplementing K2 photometry with follow-up Spitzer transit observations refined the transit ephemerides of K2-3 b, c, and d by over a factor of 10. We analyze ground-based photometry from the Evryscope and Fairborn Observatory to determine the characteristic stellar activity timescales for our Gaussian Process fit, including the stellar rotation period and activity region decay timescale. The stellar rotation signals for both stars are evident in the radial velocity data and is included in our fit using a Gaussian process trained on the photometry. We find the masses of K2-3 b, K2-3 c, and GJ3470 b to be 6.48{}-0.93+0.99, 2.14{}-1.04+1.08, and 12.58{}-1.28+1.31 M ⊕, respectively. K2-3 d was not significantly detected and has a 3σ upper limit of 2.80 M ⊕. These two systems are training cases for future TESS systems; due to the low planet densities (ρ < 3.7 g cm-3) and bright host stars (K < 9 mag), they are among the best candidates for transmission spectroscopy in order to characterize the atmospheric compositions of small planets
    • …
    corecore