1,061 research outputs found
Remarks on the extension of the Ricci flow
We present two new conditions to extend the Ricci flow on a compact manifold
over a finite time, which are improvements of some known extension theorems.Comment: 9 pages, to appear in Journal of Geometric Analysi
Normalized Ricci flow on Riemann surfaces and determinants of Laplacian
In this note we give a simple proof of the fact that the determinant of
Laplace operator in smooth metric over compact Riemann surfaces of arbitrary
genus monotonously grows under the normalized Ricci flow. Together with
results of Hamilton that under the action of the normalized Ricci flow the
smooth metric tends asymptotically to metric of constant curvature for , this leads to a simple proof of Osgood-Phillips-Sarnak theorem stating that
that within the class of smooth metrics with fixed conformal class and fixed
volume the determinant of Laplace operator is maximal on metric of constant
curvatute.Comment: a reference to paper math.DG/9904048 by W.Mueller and K.Wendland
where the main theorem of this paper was proved a few years earlier is adde
Rigidity around Poisson Submanifolds
We prove a rigidity theorem in Poisson geometry around compact Poisson
submanifolds, using the Nash-Moser fast convergence method. In the case of
one-point submanifolds (fixed points), this immediately implies a stronger
version of Conn's linearization theorem, also proving that Conn's theorem is,
indeed, just a manifestation of a rigidity phenomenon; similarly, in the case
of arbitrary symplectic leaves, it gives a stronger version of the local normal
form theorem; another interesting case corresponds to spheres inside duals of
compact semisimple Lie algebras, our result can be used to fully compute the
resulting Poisson moduli space.Comment: 43 pages, v3: published versio
The Ricci flow on noncommutative two-tori
In this paper we construct a version of Ricci flow for noncommutative 2-tori,
based on a spectral formulation in terms of the eigenvalues and eigenfunction
of the Laplacian and recent results on the Gauss-Bonnet theorem for
noncommutative tori.Comment: 18 pages, LaTe
Existence of Ricci flows of incomplete surfaces
We prove a general existence result for instantaneously complete Ricci flows
starting at an arbitrary Riemannian surface which may be incomplete and may
have unbounded curvature. We give an explicit formula for the maximal existence
time, and describe the asymptotic behaviour in most cases.Comment: 20 pages; updated to reflect galley proof correction
Ricci flows with unbounded curvature
We show that any noncompact Riemann surface admits a complete Ricci flow
g(t), t\in[0,\infty), which has unbounded curvature for all t\in[0,\infty).Comment: 12 pages, 1 figure; updated reference
The K\"ahler-Ricci flow with positive bisectional curvature
We show that the K\"ahler-Ricci flow on a manifold with positive first Chern
class converges to a K\"ahler-Einstein metric assuming positive bisectional
curvature and certain stability conditions.Comment: 15 page
A simple proof of Perelman's collapsing theorem for 3-manifolds
We will simplify earlier proofs of Perelman's collapsing theorem for
3-manifolds given by Shioya-Yamaguchi and Morgan-Tian. Among other things, we
use Perelman's critical point theory (e.g., multiple conic singularity theory
and his fibration theory) for Alexandrov spaces to construct the desired local
Seifert fibration structure on collapsed 3-manifolds. The verification of
Perelman's collapsing theorem is the last step of Perelman's proof of
Thurston's Geometrization Conjecture on the classification of 3-manifolds. Our
proof of Perelman's collapsing theorem is almost self-contained, accessible to
non-experts and advanced graduate students. Perelman's collapsing theorem for
3-manifolds can be viewed as an extension of implicit function theoremComment: v1: 9 Figures. In this version, we improve the exposition of our
arguments in the earlier arXiv version. v2: added one more grap
The Degasperis-Procesi equation as a non-metric Euler equation
In this paper we present a geometric interpretation of the periodic
Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric
linear connection on the diffeomorphism group of the circle. We also show that
for any evolution in the family of -equations there is neither gain nor loss
of the spatial regularity of solutions. This in turn allows us to view the
Degasperis-Procesi and the Camassa-Holm equation as an ODE on the Fr\'echet
space of all smooth functions on the circle.Comment: 17 page
G\"odel Type Metrics in Three Dimensions
We show that the G{\" o}del type Metrics in three dimensions with arbitrary
two dimensional background space satisfy the Einstein-perfect fluid field
equations. There exists only one first order partial differential equation
satisfied by the components of fluid's velocity vector field. We then show that
the same metrics solve the field equations of the topologically massive gravity
where the two dimensional background geometry is a space of constant negative
Gaussian curvature. We discuss the possibility that the G{\" o}del Type Metrics
to solve the Ricci and Cotton flow equations. When the vector field
is a Killing vector field we finally show that the stationary G{\" o}del Type
Metrics solve the field equations of the most possible gravitational field
equations where the interaction lagrangian is an arbitrary function of the
electromagnetic field and the curvature tensors.Comment: 17 page
- …
