1,015 research outputs found

    Revealing invisible brews: a new approach to the chemical identification of ancient beer

    Get PDF
    While ancient Near Eastern cuneiform texts and iconography unambiguously demonstrate the social, economic, and ritual significance of beer, direct archaeological evidence for beer production or consumption remains surprisingly rare. This scarcity of material evidence renders it difficult to extrapolate information about the ingredients and production processes of beer, on the one hand, and the paraphernalia and social contexts of its consumption, on the other. In recent decades, organic residue analysis has become an essential tool in the identification of ancient alcoholic beverages, but research on Near Eastern beer has focused largely on production and storage vessels, whose form, archaeological context, and associated macroscopic residues already indicated their use in beer production. In this paper, we present a novel field sampling protocol that prevents contamination along with a refined organic residue analysis methodology that relies on a series of co-occurring compounds to identify confidently beer in ceramic vessels. The same compounds were identified in several modern beer samples and, thus, support our identification of a similar fermented barley-based beverage in archaeological samples from the late second millennium BCE site of Khani Masi in northeastern Iraq. The results presented in this paper allow us, for the first time, to unambiguously link a diverse range of vessel types to the consumption and production of beer, identify a fundamental change in Mesopotamian consumption practices, and shed light on the cultural dimensions of Babylonia's encounter with the Zagros-Mesopotamian borderlands

    A farm transmission model for Salmonella in pigs for individual EU Member States

    Get PDF
    The burden of Salmonella entering pig slaughterhouses across the European Union (EU) is considered to be of public health significance. Therefore, targets will be set for each EU Member State (MS) to reduce the prevalence of Salmonella in pigs at slaughter. As part of the evidence base for the development of National Control Plans (NCPs), a Quantitative Microbiological Risk Assessment (QMRA) was funded to support the scientific opinion required by the EC from the European Food Safety Authority, and subsequently adopted by the BIOHAZ panel

    Editorial: Integrating Whole Genome Sequencing Into Source Attribution and Risk Assessment of Foodborne Bacterial Pathogens

    Get PDF
    Source attribution and microbial risk assessment have proved to be crucial to identify and prioritize food safety interventions as to effectively control the burden of human illnesses (Cassini et al., 2016; Mughini-Gras et al., 2018a, 2019). By comparing human cases and pathogen occurrences in selected animal, food, and environmental sources, microbial subtyping approaches were successfully applied to pinpoint the most important sources of Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes (Hald et al., 2004; Mullner et al., 2009a,b; Barco et al., 2013; Nielsen et al., 2017; Mughini-Gras et al., 2018b; Cody et al., 2019). Microbial risk assessment has been applied to assess known or potential adverse health effects resulting from human exposure to food-borne hazards. Through a scientific structured approach (FAO and WHO, 2021), microbial risk assessment helps to identify and quantify the risk represented by specific foods and the critical points in these foods' production chains for microbial control (Cassini et al., 2016; FAO and WHO, 2021). For both source attribution and risk assessment, one key challenge has been to define the hazard in question: is the whole foodborne pathogen species a hazard, or only some of its subtypes? In this regard the choice of the subtyping method becomes crucial. In recent years, Whole Genome Sequencing (WGS) has represented a major benefit for more targeted approaches, no longer focused on the species/genus level but at the level of subtypes (Franz et al., 2016; Fritsch et al., 2018; EFSA Panel on Biological Hazards, 2019). Besides WGS, metagenomics showed potentialities in source attribution. In particular, this approach was useful in attributing the source of environmental contamination by comparing the abundances of source-specific genetic markers (i.e., resistome) in different reservoirs (Gupta et al., 2019). Therefore, this special issue focuses on traditional and novel source attribution approaches applied on molecular, WGS, and metagenomic data as well as on a fine-tuning genetic characterization of foodborne pathogens useful for hazard identification and characterization. In particular, one study compares the outputs of a modified Hald model, which was applied to different subtyping input data of S. enterica Typhimurium and its monophasic variant (Arnold et al.) whereas two studies proposed a novel network approach and a method based on the core-genome genetic distance to attribute human infections of S. enterica Typhimurium monophasic variant and S. enterica Derby using WGS as input data (Merlotti et al.; Sévellec et al.). Another study by Duarte et al. included the relative abundance of antimicrobial resistance (AMR) associated genes (resistome) as metagenomic input data in an AMR source attribution study. Finally, two studies were focused on the molecular and genomic characterization of human isolates of Campylobacter jejuni and C. coli from China and of Listeria monocytogenes isolates collected from ready-to-eat meat and processing environment from Poland (Zhang et al.; Kurpas et al.). Arnold et al. performed a source attribution study including the genomes of S. enterica Typhimurium and its monophasic variant of 596 human sources and 327 animal sources from England and Wales between 2014 and 2016. Data from Seven Loci Multi Locus Sequence Typing (7-loci MLST), core-genome MLST (cg-MLST), and SNP calling were compared as input data. By applying a modified Hald model, 60% of human genomes were attributed to pork. Comparing different input data, results highlighted MLST as the method with the lowest fit and the lowest discriminatory power. Merlotti et al. applied a network approach to 351 human and animal genomes of S. enterica Typhimurium and its monophasic variant collected from 2013 to 2014. Three datasets of whole-genome MLST (wgMLST), cgMLST, and SNPs were used as input data. Genomes were clustered based on their genetic similarities. Interestingly, a higher percentage of cluster coherence was reported for animal sources in comparison to country and year of isolation, suggesting animal sources as the major driver of cluster formation. The approach showed to be effective in attributing up to 97.2% of human genomes to animal sources represented in the dataset. Among these genomes, the majority (84%) was attributed to pigs/pork. No significant differences were highlighted by comparing the three different input datasets. Core genome analysis was the approach applied by Sévellec et al. to attribute human sporadic cases of S. enterica Derby that occurred in France in 2014–2015 to non-human reservoirs. The authors analyzed 299 S. enterica Derby genomes corresponding to all S. enterica Derby sporadic human cases registered in the time frame, along with 141 non-human genomes. Within the non-human genomes, three main genomic lineages were detected in France: ST39-ST40 and ST682 associated to pork and ST71 associated to poultry. Within human genomes, 94% of S. enterica Derby clustered within the three genetic groups associated with pork, identifying this animal reservoir as the major contributor of S. enterica Derby to sporadic human cases in France. Relative abundance of antimicrobial resistance genes in shotgun metagenomic data was chosen in an antimicrobial resistance source attribution study by Duarte et al.. Starting from the assumption that fecal resistomes are source related, authors compared the resistomes of pooled fecal samples of pigs, broilers, turkeys, and veal calves with the resistomes of individual fecal samples of humans occupationally exposed to livestock production. Five supervised random forest models were applied on a total of 479 observations. Among the four livestock species, the results indicated that pigs have the resistome composition closest to the composition of the human resistome suggesting that occupational exposure to AMR determinants was higher among workers exposed to pigs than workers of broiler farms. Zhang et al. characterized genetic diversity and antimicrobial resistance of 236 Campylobacter jejuni and C. coli isolates collected from 2,945 individual stool samples of hospitalized patients with diarrhea in Beijing from 2017 to 2018. MLST results confirmed the high genetic diversity among isolates as well as CC21 as the most common clonal complex of C. jejuni in diarrhea patients in China. Clonal complex CC828 was the most frequently identified among C. coli isolates. Regarding antimicrobial resistance, rates higher than 88% were identified for the antimicrobials nalidixic acid, ciprofloxacin, and tetracycline. Last but not least, Kurpas et al. genetically characterized 48 L. monocytogenes isolates of PCR-serogroup IIb and IVb collected from ready-to-eat food and food processing environments. Additionally, the authors compared them with public genomes collected from humans in Poland. Among food isolates, 65% belonged to CC1, CC2, and CC6 already described as hypervirulent strains in humans. The clonal complex CC5 was also identified; mostly collected from food processing environments and belonging to PCR-serogroup IIB. Genomes of this clonal complex showed mutations in the inlA gene and a deletion of 144 bp in the inlB gene suggesting them as hypovirulent. Based on these studies, we conclude that the application of NGS data, in particular source attribution models, shows great potential. The results are improved by becoming more specific and to the point, which is considered very valuable for the decision support process. Integrations with phenotypic tests will continue to be essential for confirmation of NGS predicted outcomes

    Modelling of Salmonella dynamics in the pig slaughterhouse

    Get PDF
    The burden of Salmonella entering pig slaughterhouses across the European Union (EU) is considered to be of public health significance. Therefore, targets will be set for each EU Member State (MS) to reduce the prevalence of Salmonella infection in pigs at slaughter. In order to meet the set target, each MS will need to develop a National Control Plan (NCP)

    Polarization squeezing with cold atoms

    Full text link
    We study the interaction of a nearly resonant linearly polarized laser beam with a cloud of cold cesium atoms in a high finesse optical cavity. We show theoretically and experimentally that the cross-Kerr effect due to the saturation of the optical transition produces quadrature squeezing on both the mean field and the orthogonally polarized vacuum mode. An interpretation of this vacuum squeezing as polarization squeezing is given and a method for measuring quantum Stokes parameters for weak beams via a local oscillator is developed
    • …
    corecore