2,045 research outputs found

    Reduction of Ion Heating During Magnetic Reconnection by Large-Scale Effective Potentials

    Full text link
    The physical processes that control the partition of released magnetic energy between electrons and ions during reconnection is explored through particle-in-cell simulations and analytical techniques. We demonstrate that the development of a large-scale parallel electric field and its associated potential controls the relative heating of electrons and ions. The potential develops to restrain heated exhaust electrons and enhances their heating by confining electrons in the region where magnetic energy is released. Simultaneously the potential slows ions entering the exhaust below the Alfv\'enic speed expected from the traditional counterstreaming picture of ion heating. Unexpectedly, the magnitude of the potential and therefore the relative partition of energy between electrons and ions is not a constant but rather depends on the upstream parameters and specifically the upstream electron normalized temperature (electron beta). These findings suggest that the fraction of magnetic energy converted into the total thermal energy may be independent of upstream parameters

    Radiation risks from large solar energetic particle events

    Get PDF
    Solar energetic particles (SEPs) constitute a radiation hazard to both humans and hardware in space. Over the past few years there have been significant advances in our knowledge of the composition and energy spectra of SEP events, leading to new insights into the conditions that contribute to the largest events. This paper summarizes the energy spectra and frequency of large SEP events, and discusses the interplanetary conditions that affect the intensity of the largest events

    Kinetic signatures of the region surrounding the X-line in asymmetric (magnetopause) reconnection

    Get PDF
    Kinetic particle-in-cell simulations are used to identify signatures of the electron diffusion region (EDR) and its surroundings during asymmetric magnetic reconnection. A "shoulder" in the sunward pointing normal electric field (EN > 0) at the reconnection magnetic field reversal is a good indicator of the EDR, and is caused by magnetosheath electron meandering orbits in the vicinity of the x-line. Earthward of the X-line, electrons accelerated by EN form strong currents and crescent-shaped distribution functions in the plane perpendicular to B. Just downstream of the X-line, parallel electric fields create field-aligned crescent electron distribution functions. In the immediate upstream magnetosheath, magnetic field strength, plasma density, and perpendicular electron temperatures are lower than the asymptotic state. In the magnetosphere inflow region, magnetosheath ions intrude resulting in an Earthward pointing electric field and parallel heating of magnetospheric particles. Many of the above properties persist with a guide field of at least unity.Comment: Submitted to Geophysical Research Letter

    Energy transfer, pressure tensor and heating of kinetic plasma

    Full text link
    Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade and convert kinetic energy into heat are hotly debated. Here we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spatial filtering on the Vlasov equation, we extract information at prescribed scales and introduce several energy transfer functions. This approach allows highly inhomogeneous energy cascade to be quantified as it proceeds down to kinetic scales. The pressure work, −(P⋅∇)⋅u-\left( \boldsymbol{P} \cdot \nabla \right) \cdot \boldsymbol{u}, can trigger a channel of the energy conversion between fluid flow and random motions, which is a collision-free generalization of the viscous dissipation in collisional fluid. Both the energy transfer and the pressure work are strongly correlated with velocity gradients.Comment: 28 pages, 10 figure

    Ion Larmor Radius Effects Near A Reconnection X Line At The Magnetopause: Themis Observations And Simulation Comparison

    Get PDF
    We report a Time History of Events and Macroscale Interactions during Substorms (THEMIS-D) spacecraft crossing of a magnetopause reconnection exhaust ~9 ion skin depths (di) downstream of an X line. The crossing was characterized by ion jetting at speeds substantially below the predicted reconnection outflow speed. In the magnetospheric inflow region THEMIS detected (a) penetration of magnetosheath ions and the resulting flows perpendicular to the reconnection plane, (b) ion outflow extending into the magnetosphere, and (c) enhanced electron parallel temperature. Comparison with a simulation suggests that these signatures are associated with the gyration of magnetosheath ions onto magnetospheric field lines due to the shift of the flow stagnation point toward the low-density magnetosphere. Our observations indicate that these effects, ~2–3 di in width, extend at least 9 di downstream of the X line. The detection of these signatures could indicate large-scale proximity of the X line but do not imply that the spacecraft was upstream of the electron diffusion region

    Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence

    Full text link
    Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion Larmor radius, the ions do not respond to the reconnection dynamics leading to ''electron-only'' reconnection with very large quasi-steady reconnection rates. The transition to more traditional ''ion-coupled'' reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasi-steady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths

    Observations of the longitudinal spread of solar energetic particle events in solar cycle 24

    Get PDF
    With the twin STEREO spacecraft, significantly separated from L1-based satellites such as ACE, simultaneous multi-point measurements of solar energetic particle (SEP) events can be made for H-Fe ions from a few hundred keV/nuc to over 100 MeV/nuc and for electrons from tens to hundreds of keV. These observations allow studies of the longitudinal characteristics of SEP events to advance beyond statistical analysis of single point measurements. Although there have been few large SEP events thus far in cycle 24, there have been a number of smaller events that have been detected by more than one spacecraft. The composition of these SEP events, as indicated by the H/He and Fe/O abundance ratios, shows a dependence on longitudinal distance from the solar source in some events, at times with ratios varying by an order of magnitude. However, these variations are not organized by either the speed or width of the associated coronal mass ejections

    Observations Of Hall Reconnection Physics Far Downstream Of The X Line

    Get PDF
    Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent agreement with observations. The Hall fields are observed thousands of ion inertial lengths downstream from the reconnection X line, indicating that narrow regions of kinetic dynamics can persist extremely far downstream
    • 

    corecore