4,836 research outputs found

    IUE and IRAS observations of luminous M stars with varying gas-to dust ratios

    Get PDF
    Circumstellar gas and dust surrounding M giants and supergiants show luminous M stars to split into two distinct classes. Stars with a high gas to dust ratio all show chromospheric Ca II, H, and K emission. Stars with a high dust to gas ratio do not show chromospheric Ca II emission but are the only ones to show Balmer emission indicative of atmospheric shocks and are also the only ones to show maser emission. In order to determine whether all chromospheric indicators disappear in high dust to gas ratio stars, a survey of stars in both these classes was conducted with the IUE satellite. Long wavelength infrared fluxes for the program stars were obtained from the IRAS point source catalog. There is no obvious difference in the long wavelength observations between the two groups of stars. The long wavelength excess tends to follow the 10 micron excess and not the dust to gas ratio

    Static quark-antiquark potential and Dirac eigenvector correlators

    Full text link
    We represent the Polyakov loop correlator as a spectral sum of correlators of eigenvectors of the lattice Dirac operator. This spectral representation is studied numerically using quenched SU(3) configurations below and above the deconfinement temperature. We analyze whether the individual Dirac eigenvector correlators differ in the confined and deconfined phases. The decay properties of the normalized Dirac eigenvector correlators turn out to be essentially identical in the two phases, but the amplitudes change. This change of the amplitudes shifts the relative contributions of the individual Dirac eigenvector correlators and is the driving mechanism for the transition from the confining static potential into the deconfining one

    Mission Planner Algorithm for Urban Air Mobility Initial Performance Characterization

    Get PDF
    In this paper, an initial characterization was performed of the Mission Planner algorithm developed by NASA for Urban Air Mobility (UAM) operations research. The algorithm plans conflict-free trajectories for flights to support a given set of UAM passenger trips. The UAM trips are planned in an on-demand, first-come, first-served manner, such that any given trip is subject to the constraints imposed by previously planned trips. For this analysis, the mission planning algorithm considered only the trajectory constraints from previously-planned trips in one test condition and added vertiport constraints for the second test condition. The conflict and constraint resolution strategies used by the Mission Planner were characterized by their percentage contribution to planning iterations, their percentage effectiveness in those iterations, and their contributions to the departure delay applied to each UAM trips flight. With the exception of the climb and descent vertical speed strategies, most strategies showed reasonable or good performance in all test scenarios. In the test condition with vertipad constraints enabled, both the total number of iterations executed, and the number of flights that required planning iterations, was reduced for all scenarios. This was the result of the natural conditioning of the traffic achieved with scheduling and the additional information available to the Mission Planner from the vertiport scheduler. The next steps for this work will include improvements to the mission planning strategies and analyses with additional constraints and under other demand scenarios

    Towards a Formal Semantics of Flight Plans and Trajectories

    Get PDF
    In the National Airspace System, ight plans are often used only as a planning tool by air trac controllers and aircraft operators. These plans are implicitly translated into trajectories by the pilot or by the ight management system, and subsequently own by the aircraft. This translation process inevitably introduces di erences between the plan and the trajectory. However, given the current intended usage, exact correspondence between the plan and the trajectory is not needed. To achieve greater capacity and eciency, future air trac management concepts are being designed around the use of trajectories where predictability is extremely important. In this paper, a mathematical relationship between ight plans and trajectories is explored with the goal of making feasible, highly accurate predictions of future positions and velocities of aircraft. The goal here is to describe, in mathematically precise detail, a formal language of trajectories, whereby all receivers of the trajectory information will be able to arrive at precisely the same trajectory predication and to do this without having aircraft broadcast a large amount of data. Although even a four-dimensional ight plan is simple in structure, this paper will show that it is inherently ambiguous and will explore these issues in detail. In e ect, we propose that a rigorous semantics for ight plans can be developed and this will serve as an important stepping stone towards trajectory-based operations in the National Airspace System

    Groundwater Heat Pump: An Efficient Way to Heat and Cool Your Home

    Get PDF
    Engineers at the Utah Water Research Laboratory and the Mechanical Engineering Department at Utah State University have looked into the evonomic feasibility of groundwater heat pumps for residential heating and cooling in the Utah climate. They have found that this type of system conserves evergy and may cost less than conventional heating systems. By using a heat pump, thermal energy can be taken from goundwater and can be used to heat homes in the winder and cool them in the summer. If you are a Utah homeowner in an area where the goundwater heat pump system is economical, you may wish to take advantage of groundwater as an abundant (and often overlooked) indirect source of solar energy

    Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought

    Get PDF
    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon’s vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999–2009, and low morning backscatter persisted for 2006–2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts

    New Gauge Invariant Formulation of the Chern-Simons Gauge Theory

    Get PDF
    A new gauge invariant formulation of the relativistic scalar field interacting with Chern-Simons gauge fields is considered. This formulation is consistent with the gauge fixed formulation. Furthermore we find that canonical (Noether) Poincar\'e generators are not gauge invariant even on the constraints surface and do not satisfy the (classical) Poincar\'e algebra. It is the improved generators, constructed from the symmetric energy-momentum tensor, which are (manifestly) gauge invariant and obey the classical Poincar\'e algebra.Comment: Shortened, to appear as Papid Communication-PRD/Nov/9

    Zooplankton biomass in the ice-covered Weddell Sea, Antarctica

    Get PDF
    Zooplankton was sampled by a Rectangular Midwater Trawl (RMT 1 + 8) in Weddell Sea surface waters (0 to 300 m) between 66 and 78°S during austral summer (February – March 1983). Sixty-nine taxa including different developmental stages were considered and divided into 16 size classes between 39.5 mm length. Biomass was determined by taxon and size class for three different meso- and macroplankton communities in the oceanic region, on the northeastern shelf and on the southern shelf of the Weddell Sea. The highest biomass of 11.2 mg DW m−3 (3.4 g DW m−2) was found in the northeastern shelf community (70 to 74°S), where juvenile and adultEuphausia crystallorophias accounted for 3.7 mg DW m−3 (1.1 g DW m−2). Although not quantitatively sampled, early copepodite stages (CI to CIII) ofCalanoides acutus andCalanus propinquus ranked second with 2.7 mg DW m−3 (0.8 g DW m−2). Biomass in the northeastern shelf community was concentrated in the size ranges 1 to 4 mm and 19.5 to 39.5 mm. The oceanic community of the central Weddell Sea was dominated by copepods smaller than 5 mm, which made up half of the total oceanic biomass. The tunicateSalpa thompsoni (7.0 to 8.5 mm) was the dominant single species with 1.6 mg DW m−3 (0.5 g DW m−2). Euphausiids, mainly juvenile and adult krillEuphausia superba, comprised 1.2 mg DW m−3 (0.4 g DW m−2). Total standing stock in the oceanic community was 9.4 mg DWm−3 (2.8 g DW m−2). Lowest biomass values were found in the southern shelf community (south of 75°S) with 4.0 mg DW m−3 (1.2 g DW m−2), concentrated in the 1 to 4 mm and 14.5 to 34.5 mm size classes. Abundant species were the pteropodLimacina helicina (1 to 2 mm; 0.7 mg DW m−3; 0.2 g DW m−2) andE. crystallorophias (24.5 to 39.5 mm; 0.9 mg DW m−3; 0.3 g DW m−2). The data reveal that it is essential to distinguish among subsystems in the Southern Ocean. This leads to a better understanding of the structure and function of those pelagic food webs which represent alternatives to the paradigmatic krill-centered system

    Stratway: A Modular Approach to Strategic Conflict Resolution

    Get PDF
    In this paper we introduce Stratway, a modular approach to finding long-term strategic resolutions to conflicts between aircraft. The modular approach provides both advantages and disadvantages. Our primary concern is to investigate the implications on the verification of safety-critical properties of a strategic resolution algorithm. By partitioning the problem into verifiable modules much stronger verification claims can be established. Since strategic resolution involves searching for solutions over an enormous state space, Stratway, like most similar algorithms, searches these spaces by applying heuristics, which present especially difficult verification challenges. An advantage of a modular approach is that it makes a clear distinction between the resolution function and the trajectory generation function. This allows the resolution computation to be independent of any particular vehicle. The Stratway algorithm was developed in both Java and C++ and is available through a open source license. Additionally there is a visualization application that is helpful when analyzing and quickly creating conflict scenarios

    Ancient Amazonian populations left lasting impacts on forest structure

    Get PDF
    Amazonia contains a vast expanse of contiguous tropical forest and is influential in global carbon and hydrological cycles. Whether ancient Amazonia was highly disturbed or modestly impacted, and how ancient disturbances have shaped current forest ecosystem processes, is still under debate. Amazonian Dark Earths (ADEs), which are anthropic soil types with enriched nutrient levels, are one of the primary lines of evidence for ancient human presence and landscape modifications in settings that mostly lack stone structures and which are today covered by vegetation. We assessed the potential of using moderate spatial resolution optical satellite imagery to predict ADEs across the Amazon Basin. Maximum entropy modeling was used to develop a predictive model using locations of ADEs across the basin and satellite‐derived remotely sensed indices. Amazonian Dark Earth sites were predicted to be primarily along the main rivers and in eastern Amazonia. Amazonian Dark Earth sites, when compared with randomly selected forested sites located within 50 km of ADE sites, were less green canopies (lower normalized difference vegetation index) and had lower canopy water content. This difference was accentuated in two drought years, 2005 and 2010. This is contrary to our expectation that ADE sites would have nutrient‐rich soils that support trees with greener canopies and forests on ADE soils being more resilient to drought. Biomass and tree height were lower on ADE sites in comparison with randomly selected adjacent sites. Our results suggested that ADE‐related ancient human impact on the forest is measurable across the entirety of the 6 million km2 of Amazon Basin using remotely sensed data
    corecore