5,002 research outputs found
Rapid default transition of CD4 T cell effectors to functional memory cells
The majority of highly activated CD4 T cell effectors die after antigen clearance, but a small number revert to a resting state, becoming memory cells with unique functional attributes. It is currently unclear when after antigen clearance effectors return to rest and acquire important memory properties. We follow well-defined cohorts of CD4 T cells through the effector-to-memory transition by analyzing phenotype, important functional properties, and gene expression profiles. We find that the transition from effector to memory is rapid in that effectors rested for only 3 d closely resemble canonical memory cells rested for 60 d or longer in the absence of antigen. This is true for both Th1 and Th2 lineages, and occurs whether CD4 T cell effectors rest in vivo or in vitro, suggesting a default pathway. We find that the effector–memory transition at the level of gene expression occurs in two stages: a rapid loss of expression of a myriad of effector-associated genes, and a more gradual gain of expression of a cohort of genes uniquely associated with memory cells rested for extended periods
Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b
Recent observations of the extrasolar planet HD 189733b did not reveal the
presence of water in the emission spectrum of the planet. Yet models of such
'Hot Jupiter' planets predict an abundance of atmospheric water vapour.
Validating and constraining these models is crucial for understanding the
physics and chemistry of planetary atmospheres in extreme environments.
Indications of the presence of water in the atmosphere of HD 189733b have
recently been found in transmission spectra, where the planet's atmosphere
selectively absorbs the light of the parent star, and in broadband photometry.
Here we report on the detection of strong water absorption in a high
signal-to-noise, mid-infrared emission spectrum of the planet itself. We find
both a strong downturn in the flux ratio below 10 microns and discrete spectral
features that are characteristic of strong absorption by water vapour. The
differences between these and previous observations are significant and admit
the possibility that predicted planetary-scale dynamical weather structures
might alter the emission spectrum over time. Models that match the observed
spectrum and the broadband photometry suggest that heat distribution from the
dayside to the night side is weak. Reconciling this with the high night side
temperature will require a better understanding of atmospheric circulation or
possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur
Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b
The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot
Neptune'--reveals itself by the dimming of light as it crosses in front of and
behind its parent star as seen from Earth. Respectively known as the primary
transit and secondary eclipse, the former constrains the planet's radius and
mass, and the latter constrains the planet's temperature and, with measurements
at multiple wavelengths, its atmospheric composition. Previous work using
transmission spectroscopy failed to detect the 1.4-\mu m water vapour band,
leaving the planet's atmospheric composition poorly constrained. Here we report
the detection of planetary thermal emission from the dayside of GJ 436b at
multiple infrared wavelengths during the secondary eclipse. The best-fit
compositional models contain a high CO abundance and a substantial methane
(CH4) deficiency relative to thermochemical equilibrium models for the
predicted hydrogen-dominated atmosphere. Moreover, we report the presence of
some H2O and traces of CO2. Because CH4 is expected to be the dominant
carbon-bearing species, disequilibrium processes such as vertical mixing and
polymerization of methane into substances such as ethylene may be required to
explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times
smaller than predicted
Far-infrared spectroscopic images of M83
We have mapped the nearby face on barred spiral galaxy, M83 in the bright [CII] 158 μm, [OI] 63 and 146 μm, [NII] 122 μm, and [OIII] 88 μm fine-structure lines with the Long Wavelength Spectrometer (LWS) on ISO. The maps are nearly fully sampled, and cover the inner 6.75' x 6' region - essentially the entire optical disk. We also obtained a full LWS grating scan of the nucleus. The lines are detectable over the entire disk, and enhanced at the nucleus, where the [OI] 63 μm and [NII] lines are particularly strong. At the nucleus, the line ratios indicate a strong starburst headed by O9 stars. Surprisingly, the [OI] and [CII] line emission (from photodissociation regions) is not enhanced relative to [NII] (from low density HII regions) on the spiral arms. The line ratios are the same for the spiral arms and interarm regions. We find very strong emission in the [OIII] 88 μm, [OI] 146 μm, and [CII] lines at the intersection of the bar and spiral arm to the SW indicating particularly strong star formation activity there. The [OI] 63 μm/146 μm line ratio is quite small there likely the result of self absorption in the 63 μm line by enveloping clouds. The total luminosity of this emission peak is 1.2 x 109 Lodo
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations
It is possible to learn a great deal about exoplanet atmospheres even when we
cannot spatially resolve the planets from their host stars. In this chapter, we
overview the basic techniques used to characterize transiting exoplanets -
transmission spectroscopy, emission and reflection spectroscopy, and full-orbit
phase curve observations. We discuss practical considerations, including
current and future observing facilities and best practices for measuring
precise spectra. We also highlight major observational results on the
chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg
and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure
Gamma Radiation Effects on Peanut Skin Antioxidants
Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Particle simulation approach for subcellular dynamics and interactions of biological molecules
BACKGROUND: Spatio-temporal dynamics within cells can now be visualized at appropriate resolution, due to the advances in molecular imaging technologies. Even single-particle tracking (SPT) and single fluorophore video imaging (SFVI) are now being applied to observation of molecular-level dynamics. However, little is known concerning how molecular-level dynamics affect properties at the cellular level. RESULTS: We propose an algorithm designed for three-dimensional simulation of the reaction-diffusion dynamics of molecules, based on a particle model. Chemical reactions proceed through the interactions of particles in space, with activation energies determining the rates of these chemical reactions at each interaction. This energy-based model can include the cellular membrane, membranes of other organelles, and cytoskeleton. The simulation algorithm was tested for a reversible enzyme reaction model and its validity was confirmed. Snapshot images taken from simulated molecular interactions on the cell-surface revealed clustering domains (size ~0.2 μm) associated with rafts. Sample trajectories of raft constructs exhibited "hop diffusion". These domains corralled the diffusive motion of membrane proteins. CONCLUSION: These findings demonstrate that our approach is promising for modelling the localization properties of biological phenomena
Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4 fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
- …