98 research outputs found

    Detection, Properties, and Frequency of Local Calcium Release from the Sarcoplasmic Reticulum in Teleost Cardiomyocytes

    Get PDF
    Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from the SR. Calcium sparks were detected in 16 of 38 trout atrial myocytes and 6 of 15 ventricular cells. The spark amplitude was 1.45±0.03 times the baseline fluorescence and the time to half maximal decay of sparks was 27±3 ms. Spark frequency was 0.88 sparks µm−1 min−1 while calcium waves were 8.5 times less frequent. Inhibition of SR calcium uptake reduced the calcium transient (F/F0) from 1.77±0.17 to 1.12±0.18 (p = 0.002) and abolished calcium sparks and waves. Moreover, elevation of extracellular calcium from 2 to 10 mM promoted early and delayed afterdepolarizations (from 0.6±0.3 min−1 to 8.1±2.0 min−1, p = 0.001), demonstrating the ability of SR calcium release to induce afterdepolarizations in the trout heart. Calcium sparks of similar width and duration were also observed in zebrafish ventricular myocytes. In conclusion, this is the first study to consistently report calcium sparks in teleosts and demonstrate that the basic features of calcium release through the ryanodine receptor are conserved, suggesting that teleost cardiac myocytes is a relevant model to study the functional impact of abnormal SR function

    Prevalence and genetic diversity of Avipoxvirus in house sparrows in Spain

    Get PDF
    Avipoxvirus (APV) is a fairly common virus affecting birds that causes morbidity and mortality in wild and captive birds. We studied the prevalence of pox-like lesions and genetic diversity of APV in house sparrows (Passer domesticus) in natural, agricultural and urban areas in southern Spain in 2013 and 2014 and in central Spain for 8 months (2012±2013). Overall, 3.2% of 2,341 house sparrows visually examined in southern Spain had cutaneous lesions consistent with avian pox. A similar prevalence (3%) was found in 338 birds from central Spain. Prevalence was higher in hatch-year birds than in adults. We did not detect any clear spatial or temporal patterns of APV distribution. Molecular analyses of poxvirus-like lesions revealed that 63% of the samples were positive. Molecular and phylogenetic analyses of 29 DNA sequences from the fpv167 gene, detected two strains belonging to the canarypox clade (subclades B1 and B2) previously found in Spain. One of them appears predominant in Iberia and North Africa and shares 70% similarity to fowlpox and canarypox virus. This APV strain has been identified in a limited number of species in the Iberian Peninsula, Morocco and Hungary. The second one has a global distribution and has been found in numerous wild bird species around the world. To our knowledge, this represents the largest study of avian poxvirus disease in the broadly distributed house sparrow and strongly supports the findings that Avipox prevalence in this species in South and central Spain is moderate and the genetic diversity low.This study was funded by the Spanish Ministry of Science and Innovation (Project CGL2010-15734/BOS), the Spanish Ministry of Economy and Competitiveness (Project CGL2013-41642-P/BOS) and the Innovation and Development Agency of Andalusia (Spain) (P11-RNM-7038). Grants were awarded to JMP (Juan de la Cierva- JCI-2012-11868) and MAJM (FPIBES-2011-047609), Spanish Ministry of Economy and Competitiveness; RAJW (CEI-PICATA2012), CEI Campus of International Excellence; MM (FPU12/0568), Spanish Ministry of Education, Culture and Sports. RAJW was supported by the Craaford Foundation (grant 20160971) during the writing of this publication. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Fungal volatile organic compounds: emphasis on their plant growth-promoting

    Get PDF
    Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant-fungus interactions. Fungal-plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant-fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare

    Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades

    Full text link
    © 2020 by the authors. Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental conditions was investigated. Global annual primary production varied from 38.8 to 42.1 Gt C yr-1 over the period of 1998-2018. Inter-annual changes in global primary production did not follow a linear trend, and regional differences in the magnitude and direction of change in primary production were observed. Trends in primary production followed directly from changes in chlorophyll-a and were related to changes in the physico-chemical conditions of the water column due to inter-annual and multidecadal climate oscillations. Moreover, the sensitivity analysis in which P-I parameters were adjusted by ±1 standard deviation showed the importance of accurately assigning photosynthetic parameters in global and regional calculations of primary production. The assimilation number of the P-I curve showed strong relationships with environmental variables such as temperature and had a practically one-to-one relationship with the magnitude of change in primary production. In the future, such empirical relationships could potentially be used for a more dynamic assignment of photosynthetic rates in the estimation of global primary production. Relationships between the initial slope of the P-I curve and environmental variables were more elusive

    Aloe barbadensis: how a miraculous plant becomes reality

    Get PDF
    Aloe barbadensis Miller is a plant that is native to North and East Africa and has accompanied man for over 5,000 years. The aloe vera plant has been endowed with digestive, dermatological, culinary and cosmetic virtues. On this basis, aloe provides a range of possibilities for fascinating studies from several points of view, including the analysis of chemical composition, the biochemistry involved in various activities and its application in pharmacology, as well as from horticultural and economic standpoints. The use of aloe vera as a medicinal plant is mentioned in numerous ancient texts such as the Bible. This multitude of medicinal uses has been described and discussed for centuries, thus transforming this miracle plant into reality. A summary of the historical uses, chemical composition and biological activities of this species is presented in this review. The latest clinical studies involved in vivo and in vitro assays conducted with aloe vera gel or its metabolites and the results of these studies are reviewed
    corecore