1,161 research outputs found

    Hadronic B Decays to Charmed Baryons

    Full text link
    We study exclusive B decays to final states containing a charmed baryon within the pole model framework. Since the strong coupling for ΛbBˉN\Lambda_b\bar B N is larger than that for ΣbBˉN\Sigma_b \bar BN, the two-body charmful decay BΣc0pˉB^-\to\Sigma_c^0\bar p has a rate larger than Bˉ0Λc+pˉ\bar B^0\to\Lambda_c^+\bar p as the former proceeds via the Λb\Lambda_b pole while the latter via the Σb\Sigma_b pole. By the same token, the three-body decay Bˉ0Σc++pˉπ\bar B^0\to\Sigma_c^{++}\bar p\pi^- receives less baryon-pole contribution than BΛc+pˉπB^-\to\Lambda_c^+\bar p\pi^-. However, because the important charmed-meson pole diagrams contribute constructively to the former and destructively to the latter, Σc++pˉπ\Sigma_c^{++}\bar p\pi^- has a rate slightly larger than Λc+pˉπ\Lambda_c^+\bar p\pi^-. It is found that one quarter of the BΛc+pˉπB^-\to \Lambda_c^+\bar p\pi^- rate comes from the resonant contributions. We discuss the decays Bˉ0Σc0pˉπ+\bar B^0\to\Sigma_c^0\bar p\pi^+ and BΣc0pˉπ0B^-\to\Sigma_c^0\bar p\pi^0 and stress that they are not color suppressed even though they can only proceed via an internal W emission.Comment: 25 pages, 6 figure

    Nonleptonic Weak Decays of Bottom Baryons

    Full text link
    Cabibbo-allowed two-body hadronic weak decays of bottom baryons are analyzed. Contrary to the charmed baryon sector, many channels of bottom baryon decays proceed only through the external or internal W-emission diagrams. Moreover, W-exchange is likely to be suppressed in the bottom baryon sector. Consequently, the factorization approach suffices to describe most of the Cabibbo-allowed bottom baryon decays. We use the nonrelativistic quark model to evaluate heavy-to-heavy and heavy-to-light baryon form factors at zero recoil. When applied to the heavy quark limit, the quark model results do satisfy all the constraints imposed by heavy quark symmetry. The decay rates and up-down asymmetries for bottom baryons decaying into (1/2)++P(V)(1/2)^++P(V) and (3/2)++P(V)(3/2)^++P(V) are calculated. It is found that the up-down asymmetry is negative except for Ωb(1/2)++P(V)\Omega_b \to (1/2)^++P(V) decay and for decay modes with ψ\psi' in the final state. The prediction B(ΛbJ/ψΛ)=1.6×104B(\Lambda_b \to J/\psi\Lambda)=1.6 \times 10^{-4} for Vcb=0.038|V_{cb}|=0.038 is consistent with the recent CDF measurement. We also present estimates for Ωc(3/2)++P(V)\Omega_c \to (3/2)^++P(V) decays and compare with various model calculations.Comment: 24 pages, to appear in Phys. Rev. Uncertainties with form factor q^2 dependence are discusse

    Charmless Exclusive Baryonic B Decays

    Full text link
    We present a systematical study of two-body and three-body charmless baryonic B decays. Branching ratios for two-body modes are in general very small, typically less than 10610^{-6}, except that \B(B^-\to p \bar\Delta^{--})\sim 1\times 10^{-6}. In general, BˉNΔˉ>BˉNNˉ\bar B\to N\bar\Delta>\bar B\to N\bar N due to the large coupling constant for ΣbBΔ\Sigma_b\to B\Delta. For three-body modes we focus on octet baryon final states. The leading three-dominated modes are Bˉ0pnˉπ(ρ),npˉπ+(ρ+)\bar B^0\to p\bar n\pi^-(\rho^-), n\bar p\pi^+(\rho^+) with a branching ratio of order 3×1063\times 10^{-6} for Bˉ0pnˉπ\bar B^0\to p\bar n\pi^- and 8×1068\times 10^{-6} for Bˉ0pnˉρ\bar B^0\to p\bar n\rho^-. The penguin-dominated decays with strangeness in the meson, e.g., BppˉK()B^-\to p\bar p K^{-(*)} and Bˉ0pnˉK(),nnˉKˉ0()\bar B^0\to p\bar n K^{-(*)}, n\bar n \bar K^{0(*)}, have appreciable rates and the NNˉN\bar N mass spectrum peaks at low mass. The penguin-dominated modes containing a strange baryon, e.g., Bˉ0Σ0pˉπ+,Σnˉπ+\bar B^0\to \Sigma^0\bar p\pi^+, \Sigma^-\bar n\pi^+, have branching ratios of order (14)×106(1\sim 4)\times 10^{-6}. In contrast, the decay rate of Bˉ0Λpˉπ+\bar B^0\to\Lambda\bar p\pi^+ is smaller. We explain why some of charmless three-body final states in which baryon-antibaryon pair production is accompanied by a meson have a larger rate than their two-body counterparts: either the pole diagrams for the former have an anti-triplet bottom baryon intermediate state, which has a large coupling to the BB meson and the nucleon, or they are dominated by the factorizable external WW-emission process.Comment: 46 pages and 3 figures, to appear in Phys. Rev. D. Major changes are: (i) Calculations of two-body baryonic B decays involving a Delta resonance are modified, and (ii) Penguin-dominated modes B-> Sigma+N(bar)+p are discusse

    Study of f_0(980) and f_0(1500) from B_s \to f_0(980)\pi, f_0(1500)\pi Decays

    Full text link
    In this paper, we analyze the scalar mesons f0(980)f_0(980) and f0(1500)f_0(1500) from the decays Bˉs0f0(980)π0,f0(1500)π0\bar B^0_s \to f_0(980)\pi^0, f_0(1500)\pi^0 within Perturbative QCD approach. From the leading order calculations, we find that (a) in the allowed mixing angle ranges, the branching ratio of Bˉs0f0(980)π0\bar B^0_s\to f_0(980)\pi^0 is about (1.01.6)×107(1.0\sim1.6)\times 10^{-7}, which is smaller than that of Bˉs0f0(980)K0\bar B^0_s\to f_0(980)K^0 (the difference is a few times even one order); (b) the decay Bˉs0f0(1500)π0\bar B^0_s \to f_0(1500)\pi^0 is better to distinguish between the lowest lying state or the first excited state for f0(1500)f_0(1500), because the branching ratios for two scenarios have about one-order difference in most of the mixing angle ranges; and (c) the direct CP asymmetries of Bˉs0f0(1500)π0\bar B^0_s \to f_0(1500)\pi^0 for two scenarios also exists great difference. In scenario II, the variation range of the value ACPdir(Bˉs0f0(1500)π0){\cal A} ^{dir}_{CP}(\bar B^0_s \to f_0(1500)\pi^0) according to the mixing angle is very small, except for the values corresponding to the mixing angles being near 9090^\circ or 270270^\circ, while the variation range of ACPdir(Bˉs0f0(1500)π0){\cal A} ^{dir}_{CP}(\bar B^0_s \to f_0(1500)\pi^0) in scenario I is very large. Compared with the future data for the decay Bˉs0f0(1500)π0\bar B^0_s \to f_0(1500)\pi^0, it is ease to determine the nature of the scalar meson f0(1500)f_0(1500).Comment: 16 pages, 3 figures, Revte

    Updated Analysis of a_1 and a_2 in Hadronic Two-body Decays of B Mesons

    Full text link
    Using the recent experimental data of BD()(π,ρ)B\to D^{(*)}(\pi,\rho), BD()Ds()B\to D^{(*)} D_s^{(*)}, BJ/ψK()B\to J/\psi K^{(*)} and various model calculations on form factors, we re-analyze the effective coefficients a_1 and a_2 and their ratio. QCD and electroweak penguin corrections to a_1 from BD()Ds()B\to D^{(*)}D_s^{(*)} and a_2 from BJ/ψK()B\to J/\psi K^{(*)} are estimated. In addition to the model-dependent determination, the effective coefficient a_1 is also extracted in a model-independent way as the decay modes BD()hB\to D^{(*)}h are related by factorization to the measured semileptonic distribution of BD()νˉB\to D^{(*)}\ell \bar\nu at q2=mh2q^2=m_h^2. Moreover, this enables us to extract model-independent heavy-to-heavy form factors, for example, F0BD(mπ2)=0.66±0.06±0.05F_0^{BD}(m_\pi^2)=0.66\pm0.06\pm0.05 and A0BD(mπ2)=0.56±0.03±0.04A_0^{BD^*}(m_\pi^2)=0.56\pm0.03\pm0.04. The determination of the magnitude of a_2 from BJ/ψK()B\to J/\psi K^{(*)} depends on the form factors F1BKF_1^{BK}, A1,2BKA_{1,2}^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi}. By requiring that a_2 be process insensitive (i.e., the value of a_2 extracted from J/ψKJ/\psi K and J/ψKJ/\psi K^* states should be similar), as implied by the factorization hypothesis, we find that BK()B\to K^{(*)} form factors are severely constrained; they respect the relation F1BK(mJ/ψ2)1.9A1BK(mJ/ψ2)F_1^{BK}(m^2_{J/\psi})\approx 1.9 A_1^{BK^*}(m^2_{J/\psi}). Form factors A2BKA_2^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi} inferred from the measurements of the longitudinal polarization fraction and the P-wave component in BJ/ψKB\to J/\psi K^* are obtained. A stringent upper limit on a_2 is derived from the current bound on \ov B^0\to D^0\pi^0 and it is sensitive to final-state interactions.Comment: 33 pages, 2 figures. Typos in Tables I and IX are corrected. To appear in Phys. Rev.

    Impact of Subleading Corrections on Hadronic B Decays

    Full text link
    We study the subleading corrections originating from the 3-parton (q\bar q g) Fock states of final-state mesons in B decays. The corrections could give significant contributions to decays involving an \omega or \eta^{(\prime)} in the final states. Our results indicate the similarity of \omega K and \omega \pi^- rates, of order 5\times 10^{-6}, consistent with the recent measurements. We obtain a_2(B\to J/\psi K)\approx 0.27+0.05i, in good agreement with data. Without resorting to the unknown singlet annihilation effects, 3-parton Fock state contributions can enhance the branching ratios of K\eta' to the level above 50\times 10^{-6}.Comment: 5 pages, 5 figures, revtex4; some typos corrected, a new figure and a reference added, more explanations for the calculation provided, to appear in Phys. Rev.

    Implications of Recent Measurements of Hadronic Charmless B Decays

    Get PDF
    Implications of recent CLEO measurements of hadronic charmless B decays are discussed. (i) Employing the Bauer-Stech-Wirbel (BSW) model for form factors as a benchmark, the Bπ+πB\to\pi^+\pi^- data indicate that the form factor F0Bπ(0)F_0^{B\pi}(0) is smaller than that predicted by the BSW model, whereas the data of Bωπ,KηB\to\omega\pi, K^*\eta imply that the form factors A0Bω(0),A0BK(0)A_0^{B\omega}(0), A_0^{BK^*}(0) are greater than the BSW model's values. (ii) The tree-dominated modes Bπ+π,ρ0π±,ωπ±B\to\pi^+\pi^-, \rho^0\pi^\pm, \omega\pi^\pm imply that the effective number of colors N_c(LL) for (V-A)(V-A) operators is preferred to be smaller, while the current limit on BϕKB\to\phi K shows that N_c(LR)>3. The data of BKηB\to K\eta' and KηK^*\eta clearly indicate that Nc(LR)Nc(LL)N_c(LR)\gg N_c(LL). (iii) In order to understand the observed suppression of π+π\pi^+\pi^- and non-suppression of KπK\pi modes, both being governed by the form factor F0BπF_0^{B\pi}, the unitarity angle γ\gamma is preferred to be greater than 9090^\circ. By contrast, the new measurement of B±ρ0π±B^\pm\to\rho^0\pi^\pm no longer strongly favors cosγ<0\cos\gamma<0. (iv) The observed pattern K^-\pi^+\sim \ov K^0\pi^-\sim {2\over 3}K^-\pi^0 is consistent with the theoretical expectation: The constructive interference between electroweak and QCD penguin diagrams in the Kπ0K^-\pi^0 mode explains why {\cal B}(B^-\to K^-\pi^0)>{1\over 2}{\cal B}(\ov B^0\to K^-\pi^+). (v) The observation \nc(LL)<3<\nc(LR) and our preference for \nc(LL)\sim 2 and \nc(LR)\sim 6 are justified by a recent perturbative QCD calculation of hadronic rare B decays in the heavy quark limit.Comment: 21 pages; CLEO measurements of several charmless B decay modes are updated. Discussion of the unitarity angle gamma in the \rho\pi mode is revise

    B -> J/psi K^* Decays in QCD Factorization

    Full text link
    The hadronic decay B -> J K^* is analyzed within the framework of QCD factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the transversity basis and their relative phases are studied using various different form-factor models for B-K^* transition. The effective parameters a_2^h for helicity h=0,+,- states receive different nonfactorizable contributions and hence they are helicity dependent, contrary to naive factorization where a_2^h are universal and polarization independent. QCD factorization breaks down even at the twist-2 level for transverse hard spectator interactions. Although a nontrivial strong phase for the A_\parallel amplitude can be achieved by adjusting the phase of an infrared divergent contribution, the present QCD factorization calculation cannot say anything definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3 corrections and is not large enough to account for the observed branching ratio and the fraction of longitudinal polarization. Possible enhancement mechanisms for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos correcte

    Charmless Two-body Baryonic B Decays

    Full text link
    We study charmless two-body baryonic B decays in a diagramatic approach. Relations on decay amplitudes are obtained. In general there are more than one tree and more than one penguin amplitudes. The number of independent amplitudes can be reduced in the large m_B limit. It leads to more predictive results. Some prominent modes for experimental searches are pointed out.Comment: 15 pages, 2 figures. To appear in Phys. Rev.

    The lifetime of B_c-meson and some relevant problems

    Full text link
    The lifetime of the B_c-meson is estimated with consistent considerations on all of the heavy mesons (B0,B±,Bs,D0,D±DsB^0, B^\pm, B_s, D^0, D^\pm D_s) and the double heavy meson B_c. In the estimate, the framework, where the non-spectator effects for nonleptonic decays are taken into account properly, is adopted, and the parameters needed to be fixed are treated carefully and determined by fitting the available data. The bound-state effects in it are also considered. We find that in decays of the meson B_c, the QCD correction terms of the penguin diagrams and the main component terms c_1O_1, c_2O_2 of the effective interaction Lagrangian have direct interference that causes an enhancement about 3 ~ 4% in the total width of the B_c meson.Comment: 27 pages, 0 figur
    corecore