9 research outputs found

    Giant magnetoresistance of multiwall carbon nanotubes: modeling the tube/ferromagnetic-electrode burying contact

    Full text link
    We report on the giant magnetoresistance (GMR) of multiwall carbon nanotubes with ultra small diameters. In particular, we consider the effect of the inter-wall interactions and the lead/nanotube coupling. Comparative studies have been performed to show that in the case when all walls are well coupled to the electrodes, the so-called inverse GMR can appear. The tendency towards a negative GMR depends on the inter-wall interaction and on the nanotube le ngth. If, however, the inner nanotubes are out of contact with one of the electrodes, the GMR remains positive even for relatively strong inter-wall interactions regardless of the outer nanotube length. These results shed additional light on recently reported experimental data, where an inverse GMR was found in some multiwall carbon nanotube samples.Comment: 5 pages, 5 figure

    W=0 Pairing in (N,N)(N,N) Carbon Nanotubes away from Half Filling

    Full text link
    We use the Hubbard Hamiltonian HH on the honeycomb lattice to represent the valence bands of carbon single-wall (N,N)(N,N) nanotubes. A detailed symmetry analysis shows that the model allows W=0 pairs which we define as two-body singlet eigenstates of HH with vanishing on-site repulsion. By means of a non-perturbative canonical transformation we calculate the effective interaction between the electrons of a W=0 pair added to the interacting ground state. We show that the dressed W=0 pair is a bound state for resonable parameter values away from half filling. Exact diagonalization results for the (1,1) nanotube confirm the expectations. For (N,N)(N,N) nanotubes of length ll, the binding energy of the pair depends strongly on the filling and decreases towards a small but nonzero value as ll \to \infty. We observe the existence of an optimal doping when the number of electrons per C atom is in the range 1.2÷\div1.3, and the binding energy is of the order of 0.1 ÷\div 1 meV.Comment: 16 pages, 6 figure

    Manipulating the Tomonaga-Luttinger exponent by electric field modulation

    Full text link
    We establish a theoretical framework for artificial control of the power-law singularities in Tomonaga-Luttinger liquid states. The exponent governing the power-law behaviors is found to increase significantly with an increase in the amplitude of the periodic electric field modulation applied externally to the system. This field-induced shift in the exponent indicates the tunability of the transport properties of quasi-one-dimensional electron systems.Comment: 7 pages, 3 figure
    corecore