607 research outputs found
Anomalous NMR Spin-Lattice Relaxation in SrB_{6} and Ca_{1-x}La_{x}B_{6}
We report the results of {11}B nuclear magnetic resonance (NMR) measurements
of SrB_{6} and Ca_{0.995}La_{0.05}B_{6} below room temperature. Although the
electrical resistivities of these two materials differ substantially, their
{11}B-NMR responses exhibit some strikingly common features. Both materials
exhibit ferromagnetic order, but their {11}B-NMR spectra reveal very small
hyperfine fields at the Boron sites. The spin lattice relaxation T_{1}^{-1}
varies considerably with external field but changes with temperature only below
a few K. We discuss these unusual results by considering various different
scenarios for the electronic structure of these materials.Comment: Accepted for publication in Phys. Rev. B Rapid communication, 4
pages, 3 figures. This manuscript replaces an earlier version and includes
some minor changes in the text and in Fig.
Temperature dependence of the upper critical field of high-Tc superconductors from isothermal magnetization data. Influence of a temperature dependent Ginzburg-Landau parameter
We show that the scaling procedure, recently proposed for the evaluation of
the temperature variation of the normalized upper critical field of type-II
superconductors, may easily be modified in order to take into account a
possible temperature dependence of the Ginzburg-Landau parameter kappa. As an
example, we consider kappa (T) as it follows from the microscopic theory of
superconductivity.Comment: 7 pages, 4 figur
Kondo Behavior of U in CaB
Replacing U for Ca in semiconducting CaB at the few at.% level induces
metallic behaviour and Kondo-type phenomena at low temperatures, a rather
unusual feature for U impurities in metallic hosts. For
CaUB, the resistance minimum occurs at = 17 K. The
subsequent characteristic logarithmic increase of the resistivity with
decreasing temperature merges into the expected dependence below 0.8 K.
Data of the low-temperature specific heat and the magnetization are analyzed by
employing a simple resonance-level model. Analogous measurements on LaB
with a small amount of U revealed no traces of Kondo behavior, above 0.4 K.Comment: 4 pages, 4 figures, submitted for publication to Europhysics Letter
On the interpretation of the equilibrium magnetization in the mixed state of high-Tc superconductors
We apply a recently developed scaling procedure to the analysis of
equilibrium magnetization M(H) data that were obtained for T-2212 and
Bi-2212single crystals and were reported in the literature. The temperature
dependencies of the upper critical field and the magnetic field penetration
depth resulting from our analysis are distinctly different from those obtained
in the original publications. We argue that theoretical models, which are
usually employed for analyses of the equilibrium magnetization in the mixed
state of type-II superconductors are not adequate for a quantitative
description of high-Tc superconductors. In addition, we demonstrate that the
scaled equilibrium magnetization M(H) curve for a Tl-2212 sample reveals a
pronounced kink, suggesting a phase transition in the mixed state.Comment: 9 pages, 5figure
Heavy-Fermion Formation at the Metal-to-Insulator Transition in GdSrTiO
The perovskite-like transition-metal oxide GdSrTiO is
investigated by measurements of resistivity, specific-heat, and electron
paramagnetic resonance (EPR). Approaching the metal-to-insulator transition
from the metallic regime (), the Sommerfeld coefficient of
the specific heat becomes strongly enhanced and the resistivity increases
quadratically at low temperatures, which both are fingerprints of strong
electronic correlations. The temperature dependence of the dynamic
susceptibility, as determined from the Gd-EPR linewidth, signals the
importance of strong spin fluctuations, as observed in heavy-fermion compounds.Comment: 4pages, 3 figure
Pressure and linear heat capacity in the superconducting state of thoriated UBe13
Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large
linear term in its specific heat. We show that under uniaxial pressure, the
linear heat capacity increases in magnitude by more than a factor of two. The
change is reversible and suggests that the linear term is an intrinsic property
of the material. In addition, we find no evidence of hysteresis or of latent
heat in the low-temperature and low-pressure portion of the phase diagram,
showing that all transitions in this region are second order.Comment: 5 pages, 4 figure
Charge dynamics and "ferromagnetism" of A1-xLaxB6 (A=Ca and Sr)
Ferromagnetism has been reported recently in La-doped alkaline-earth
hexaborides, A1-xLaxB6 (A=Ca, Sr, and Ba). We have performed the reflectivity,
Hall resistivity, and magnetization measurements of A1-xLaxB6. The results
indicate that A1-xLaxB6 can be regarded as a simple doped semimetal, with no
signature of an excitonic state as suggested by several theories. It is also
found that the surface of as-grown samples (10 micrometer in thickness) has a
different electronic structure from a bulk one, and a fairly large number of
paramagnetic moments are confined in this region. After eliminating these
paramagnetic moments at the surface, we could not find any evidence of an
intrinsic ferromagnetic moment in our samples, implying the possibility that
the ferromagnetism of A1-xLaxB6 reported so far is neither intrinsic.Comment: 7 pages, 8 figure
Fermi Surface Measurements on the Low Carrier Density Ferromagnet Ca1-xLaxB6 and SrB6
Recently it has been discovered that weak ferromagnetism of a dilute 3D
electron gas develops on the energy scale of the Fermi temperature in some of
the hexaborides; that is, the Curie temperature approximately equals the Fermi
temperature. We report the results of de Haas-van Alphen experiments on two
concentrations of La-doped CaB6 as well as Ca-deficient Ca1-dB6 and
Sr-deficient Sr1-dB6. The results show that a Fermi surface exists in each case
and that there are significant electron-electron interactions in the low
density electron gas.Comment: 4 pages, 5 figures, submitted to PR
Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of
We discuss possible magnetic structures in UPt based on our analysis of
elastic neutron-scattering experiments in high magnetic fields at temperatures
. The existing experimental data can be explained by a single-{\bf q}
antiferromagnetic structure with three independent domains. For modest in-plane
spin-orbit interactions, the Zeeman coupling between the antiferromagnetic
order parameter and the magnetic field induces a rotation of the magnetic
moments, but not an adjustment of the propagation vector of the magnetic order.
A triple-{\bf q} magnetic structure is also consistent with neutron
experiments, but in general leads to a non-uniform magnetization in the
crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex
Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3
The optical properties of the heavy-fermion compound UPdAl have been
measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm) at
temperatures K. Below the coherence temperature K, the hybridization gap opens around 10 meV. As the temperature decreases
further ( K), a well pronounced pseudogap of approximately 0.2 meV
develops in the optical response; we relate this to the antiferromagnetic
ordering which occurs below K. The frequency dependent mass and
scattering rate give evidence that the enhancement of the effective mass mainly
occurs below the energy which is associated to the magnetic correlations
between the itinerant and localized 5f electrons. In addition to this
correlation gap, we observe a narrow zero-frequency conductivity peak which at
2 K is less than 0.1 meV wide, and which contains only a fraction of the
delocalized carriers. The analysis of the spectral weight infers a loss of
kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure
- …
