94 research outputs found
Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports
In this paper we present a survey about analytic properties of polynomials
orthogonal with respect to a weighted Sobolev inner product such that the
vector of measures has an unbounded support. In particular, we are focused in
the study of the asymptotic behaviour of such polynomials as well as in the
distribution of their zeros. Some open problems as well as some new directions
for a future research are formulated.Comment: Changed content; 34 pages, 41 reference
Explosion Flame Acceleration over Obstacles: Effects of Separation Distance for a Range of Scales
The influence of obstacle separation distance on explosion flame acceleration was studied for 10% methane-air mixtures using two 20% blockage obstacles with variable number and width of bars (variable obstacle length scale) were investigated in a 162 mm diameter 4.5 m long tube with ignition on the centre of the closed end and flame propagation towards the open end. The spacing between the obstacles was varied from 0.25 m to 2.75 m. It was observed that the maximum overpressure and flame speed increased with the reduction in number of flat-bars (i.e. with increasing obstacle length scale). A maximum overpressure of 129 kPa at 2.25 m obstacle spacing was achieved with 1-flat-bar obstacles, followed by 118 kPa and 110 kPa for 2 and 4-flat-bars respectively at 1.25 m and 0.5 m obstacle separation. Turbulent to laminar burning velocity ratios downstream of the second obstacle at the optimum spacing for maximum interaction were in the range of 62-122. These are the magnitudes of flame acceleration required to explain overpressures in vapour cloud explosions in the presence of obstacles. It is worth appreciating that two obstacles of lower blockages but spaced optimally could generate higher explosion severity in terms of overpressure, flame speed and turbulence level similar to real gas explosion incidents
The effect of vent size and congestion in large-scale vented natural gas/air explosions
A typical building consists of a number of rooms; often with windows of different size and failure pressure and obstructions in the form of furniture and décor, separated by partition walls with interconnecting doorways. Consequently, the maximum pressure developed in a gas explosion would be dependent upon the individual characteristics of the building. In this research, a large-scale experimental programme has been undertaken at the DNV GL Spadeadam Test Site to determine the effects of vent size and congestion on vented gas explosions. Thirty-eight stoichiometric natural gas/air explosions were carried out in a 182 m3 explosion chamber of L/D = 2 and KA = 1, 2, 4 and 9. Congestion was varied by placing a number of 180 mm diameter polyethylene pipes within the explosion chamber, providing a volume congestion between 0 and 5% and cross-sectional area blockages ranging between 0 and 40%. The series of tests produced peak explosion overpressures of between 70 mbar and 3.7 bar with corresponding maximum flame speeds in the range 35 - 395 m/s at a distance of 7 m from the ignition point. The experiments demonstrated that it is possible to generate overpressures greater than 200 mbar with volume blockages of as little as 0.57%, if there is not sufficient outflow through the inadvertent venting process. The size and failure pressure of potential vent openings, and the degree of congestion within a building, are key factors in whether or not a building will sustain structural damage following a gas explosion. Given that the average volume blockage in a room in a UK inhabited building is in the order of 17%, it is clear that without the use of large windows of low failure pressure, buildings will continue to be susceptible to significant structural damage during an accidental gas explosion
Origins Of Heterospory And The Seed Habit: The Role Of Heterochrony
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149713/1/tax04577.pd
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Role played by BRCA1 in regulating the interferon gamma mediated antiproliferative response
Available from British Library Document Supply Centre- DSC:DXN060034 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
Experimental study on vented gas explosion in a cylindrical vessel with a vent duct
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, F ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at F = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure
Local Approximation Using Hermite Functions
We develop a wavelet-like representation of functions in Lp(R) based on their Fourier–Hermite coefficients; i.e., we describe an expansion of such functions where the local behavior of the terms characterize completely the local smoothness of the target function. In the case of continuous functions, a similar expansion is given based on the values of the functions at arbitrary points on the real line. In the process, we give new proofs for the localization of certain kernels, as well as for some very classical estimates such as the Markov–Bernstein inequality
- …