5 research outputs found

    Star polymers: From conformations to interactions to phase diagrams

    No full text
    We review recent progress achieved in the theoretical description of the interactions, correlations, and phase behavior of concentrated solutions of star polymers, sterically stabilized colloids, and micelles. We show that the theoretical prediction of an ultrasoft, logarithmically diverging effective interaction between the star centers, which has been confirmed by SANSexperiments and computer simulations, lies in the core of a host of unusual phenomena encountered in such systems. These include anomalous structure factors, reentrant melting behavior, as well as a variety of exotic crystal phases. Extensions to polydisperse stars and the role of many-body forces are also discussed. A particular ‘mean-field’ character of star polymer fluids is presented and it is shown that it manifests itself in the shape and structure of sedimentation profiles of these systems.Здійснено огляд недавніх досягнень у теоретичному описі взаємодій, кореляцій і фазової поведінки концентрованих розчинів зіркових полімерів, просторово стійких колоїдів і міцел. Ми покажемо, що теоретично передбачена надм’яка логарифмічно розбіжна ефективна взаємодія між центрами зірок, що була підтверджена SANS-експериментами і комп’ютерними симуляціями, потрапляє в множину незвичних явищ, які спостерігаються в таких системах. Сюди відносяться аномальні структурні фактори, поведінка зворотнього плавлення, множини екзотичних кристалічних фаз. Також обговорено узагальнення на випадок полідисперсних зірок і роль сил багатьох тіл. Представлено особливу поведінку типу “cереднього поля” плинів зіркових полімерів і показано, що вона проявляється у формі і структурі профілів осаджування цих систем

    Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels

    Full text link
    Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectrolyte solutions are calculated via second-order perturbation (linear response) theory. By modelling the macroions as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The counterions are found to penetrate stars more easily than microgels, with important implications for screening of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the average macroion concentration, emerges naturally in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
    corecore