5 research outputs found
Star polymers: From conformations to interactions to phase diagrams
We review recent progress achieved in the theoretical description of the
interactions, correlations, and phase behavior of concentrated solutions of
star polymers, sterically stabilized colloids, and micelles. We show that the
theoretical prediction of an ultrasoft, logarithmically diverging effective interaction
between the star centers, which has been confirmed by SANSexperiments
and computer simulations, lies in the core of a host of unusual
phenomena encountered in such systems. These include anomalous structure
factors, reentrant melting behavior, as well as a variety of exotic crystal
phases. Extensions to polydisperse stars and the role of many-body forces
are also discussed. A particular ‘mean-field’ character of star polymer fluids
is presented and it is shown that it manifests itself in the shape and
structure of sedimentation profiles of these systems.Здійснено огляд недавніх досягнень у теоретичному описі взаємодій, кореляцій і фазової поведінки концентрованих розчинів зіркових полімерів, просторово стійких колоїдів і міцел. Ми покажемо,
що теоретично передбачена надм’яка логарифмічно розбіжна ефективна взаємодія між центрами зірок, що була підтверджена SANS-експериментами і комп’ютерними симуляціями, потрапляє в множину незвичних явищ, які спостерігаються в таких системах. Сюди
відносяться аномальні структурні фактори, поведінка зворотнього
плавлення, множини екзотичних кристалічних фаз. Також обговорено узагальнення на випадок полідисперсних зірок і роль сил багатьох
тіл. Представлено особливу поведінку типу “cереднього поля” плинів
зіркових полімерів і показано, що вона проявляється у формі і структурі профілів осаджування цих систем
Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels
Counterion distributions and effective electrostatic interactions between
spherical macroions in polyelectrolyte solutions are calculated via
second-order perturbation (linear response) theory. By modelling the macroions
as continuous charge distributions that are permeable to counterions,
analytical expressions are obtained for counterion profiles and effective pair
interactions in solutions of star-branched and microgel macroions. The
counterions are found to penetrate stars more easily than microgels, with
important implications for screening of bare macroion interactions. The
effective pair interactions are Yukawa in form for separated macroions, but are
softly repulsive and bounded for overlapping macroions. A one-body volume
energy, which depends on the average macroion concentration, emerges naturally
in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure