33 research outputs found

    Pathways for Energy Transfer in the Core Light-Harvesting Complexes CP43 and CP47 of Photosystem II

    Get PDF
    AbstractThe pigment-protein complexes CP43 and CP47 transfer excitation energy from the peripheral antenna of photosystem II toward the photochemical reaction center. We measured the excitation dynamics of the chlorophylls in isolated CP43 and CP47 complexes at 77K by time-resolved absorbance-difference and fluorescence spectroscopy. The spectral relaxation appeared to occur with rates of 0.2–0.4ps and 2–3ps in both complexes, whereas an additional relaxation of 17ps was observed only in CP47. Using the 3.8-Å crystal structure of the photosystem II core complex from Synechococcus elongatus (A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, 2001, Nature, 409:739–743), excitation energy transfer kinetics were calculated and a Monte Carlo simulation of the absorption spectra was performed. In both complexes, the rate of 0.2–0.4ps can be ascribed to excitation energy transfer within a layer of chlorophylls near the stromal side of the membrane, and the slower 2–3-ps process to excitation energy transfer to the calculated lowest excitonic state. We conclude that excitation energy transfer within CP43 and CP47 is fast and does not contribute significantly to the well-known slow trapping of excitation energy in photosystem II

    Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates

    Get PDF
    Background: In pre-clinical animal studies, the uniformity of dosing across subjects and routes of administration is a crucial requirement. In preparation for a study in which aerosolized live-attenuated measles virus vaccine was administered to cynomolgus monkeys (Macaca fascicularis) by inhalation, we assessed the percentage of a nebulized dose inhaled under varying conditions. Methods: Drug delivery varies with breathing parameters. Therefore we determined macaque breathing patterns (tidal volume, breathing frequency, and inspiratory to expiratory (I:E) ratio) across a range of 3.3-6.5 kg body weight, using a pediatric pneumotachometer interfaced either with an endotracheal tube or a facemask. Subsequently, these breathing patterns were reproduced using a breathing simulator attached to a filter to collect the inhaled dose. Albuterol was nebulized using a vibrating mesh nebulizer and the percentage inhaled dose was determined by extraction of drug from the filter and subsequent quantification. Results: Tidal volumes ranged from 24 to 46 mL, breathing frequencies from 19 to 31 breaths per minute and I:E ratios from 0.7 to 1.6. A small pediatric resuscitation mask was identified as the best fitting interface between animal and pneumotachometer. The average efficiency of inhaled dose delivery was 32.1% (standard deviation 7.5, range 24%-48%), with variation in tidal volumes as the most important determinant. Conclusions: Studies in non-human primates aimed at comparing aerosol delivery with other routes of administration should take both the inter-subject variation and relatively low efficiency of delivery to these low body weight mammals into account

    Direct blood PCR in combination with Nucleic Acid Laterla Flow Immuno-Assay for the detection of Plasmodium species in malaria endemic settings.

    No full text
    Declining malaria transmission and known difficulties with current diagnostic tools for malaria, such as microscopy and rapid diagnostic tests (RDTs) in particular at low parasite densities, still warrant the search for sensitive diagnostic tests. Molecular tests need substantial simplification before implementation in clinical settings in countries where malaria is endemic. Direct blood PCR (db-PCR), circumventing DNA extraction, to detect Plasmodium was developed and adapted to be visualized by nucleic acid lateral flow immunoassay (NALFIA). The assay was evaluated in the laboratory against samples from confirmed Sudanese patients (n = 51), returning travelers (n = 214), samples from the Dutch Blood Bank (n = 100), and in the field in Burkina Faso (n = 283) and Thailand (n = 381) on suspected malaria cases and compared to RDT and microscopy. The sensitivity and specificity of db-PCR-NALFIA compared to the initial diagnosis in the laboratory were 94.4% (95% confidence interval [CI] = 0.909 to 0.969) and 97.4% (95% CI = 0.909 to 0.969), respectively. In Burkina Faso, the sensitivity was 94.8% (95% CI = 0.88.7 to 97.9%), and the specificity was 82.4% (95% CI = 75.4 to 87.7%) compared to microscopy and 93.3% (95% CI = 87.4 to 96.7%) and 91.4% (95% CI = 85.2 to 95.3%) compared to RDT. In Thailand, the sensitivity and specificity were 93.4% (CI = 86.4 to 97.1%) and 90.9 (95% CI = 86.7 to 93.9%), respectively, compared to microscopy and 95.6% (95% CI = 88.5 to 98.6%) and 87.1% (95% CI = 82.5 to 90.6) compared to RDT. db-PCR-NALFIA is highly sensitive and specific for easy and rapid detection of Plasmodium parasites and can be easily used in countries where malaria is endemic. The inability of the device to discriminate Plasmodium species requires further investigation

    Direct blood PCR in combination with Nucleic Acid Laterla Flow Immuno-Assay for the detection of Plasmodium species in malaria endemic settings.

    No full text
    Declining malaria transmission and known difficulties with current diagnostic tools for malaria, such as microscopy and rapid diagnostic tests (RDTs) in particular at low parasite densities, still warrant the search for sensitive diagnostic tests. Molecular tests need substantial simplification before implementation in clinical settings in countries where malaria is endemic. Direct blood PCR (db-PCR), circumventing DNA extraction, to detect Plasmodium was developed and adapted to be visualized by nucleic acid lateral flow immunoassay (NALFIA). The assay was evaluated in the laboratory against samples from confirmed Sudanese patients (n = 51), returning travelers (n = 214), samples from the Dutch Blood Bank (n = 100), and in the field in Burkina Faso (n = 283) and Thailand (n = 381) on suspected malaria cases and compared to RDT and microscopy. The sensitivity and specificity of db-PCR-NALFIA compared to the initial diagnosis in the laboratory were 94.4% (95% confidence interval [CI] = 0.909 to 0.969) and 97.4% (95% CI = 0.909 to 0.969), respectively. In Burkina Faso, the sensitivity was 94.8% (95% CI = 0.88.7 to 97.9%), and the specificity was 82.4% (95% CI = 75.4 to 87.7%) compared to microscopy and 93.3% (95% CI = 87.4 to 96.7%) and 91.4% (95% CI = 85.2 to 95.3%) compared to RDT. In Thailand, the sensitivity and specificity were 93.4% (CI = 86.4 to 97.1%) and 90.9 (95% CI = 86.7 to 93.9%), respectively, compared to microscopy and 95.6% (95% CI = 88.5 to 98.6%) and 87.1% (95% CI = 82.5 to 90.6) compared to RDT. db-PCR-NALFIA is highly sensitive and specific for easy and rapid detection of Plasmodium parasites and can be easily used in countries where malaria is endemic. The inability of the device to discriminate Plasmodium species requires further investigation

    Light Harvesting in Photosynthesis

    No full text

    Analyse van hydrolyseketen voor pelagische bijvangst

    No full text
    corecore