545 research outputs found
An Algebraic Jost-Schroer Theorem for Massive Theories
We consider a purely massive local relativistic quantum theory specified by a
family of von Neumann algebras indexed by the space-time regions. We assume
that, affiliated with the algebras associated to wedge regions, there are
operators which create only single particle states from the vacuum (so-called
polarization-free generators) and are well-behaved under the space-time
translations. Strengthening a result of Borchers, Buchholz and Schroer, we show
that then the theory is unitarily equivalent to that of a free field for the
corresponding particle type. We admit particles with any spin and localization
of the charge in space-like cones, thereby covering the case of
string-localized covariant quantum fields.Comment: 21 pages. The second (and crucial) hypothesis of the theorem has been
relaxed and clarified, thanks to the stimulus of an anonymous referee. (The
polarization-free generators associated with wedge regions, which always
exist, are assumed to be temperate.
Probing neutral top-pion via a flavor-changing process
In the framework of topcolor-assisted-technicolor model(TC2), we study a
flavor-changing neutral top-pion production process . The study shows that there exists a resonance effect
which can enhance the cross section up to a few fb even tens fb. For a yearly
luminosity 100 at future linear colliders, there might be hundreds
even thousands events to be produced. On the other hand, the background of such
flavor-changing process is very clean due to the GIM mechanism in SM . With
such sufficient events and clean background, neutral toppion could be detected
at future linear colliders with high center of energy and luminosity. Our study
provides a possible way to test TC2 model.Comment: 10 pages, 4 figures,has been accepted by Phys.Rev.
Dynamics of O(N) chiral supersymmetry at finite energy density
We consider an O(N) version of a massive, interacting, chiral supersymmetry
model solved exactly in the large N limit. We demonstrate that the system
approaches a stable attractor at high energy densities, corresponding to a
non-perturbative state for which the relevant field quanta are massless. The
state is one of spontaneously broken O(N), which, due to the influence of
supersymmetry, does not become restored at high energies. Introducing soft
supersymmetry breaking to the Lagrangian results in scalar masses at the soft
breaking scale m_s independent of the mass scale of supersymmetry mu, with even
smaller masses for the fermions.Comment: 9 pages, 4 figure
Probing Anomalous Wtb Coupling via Single Top Production at TeV Energy e Colliders
Results of complete tree level calculations of the single top production
reaction at the Next Linear Collider, including
the contribution of anomalous operators to the Wtb coupling are presented. The
sensitivity for probing the structure of the Wtb coupling in a model
independent way is analyzed and found to be significantly higher than for
comparable measurements at the Tevatron.Comment: 10 Latex pages including 1 ps-figure and 3 eps-figure
Generalized Conformal Quantum Mechanics of D0-brane
We study the generalized conformal quantum mechanics of the probe D0-brane in
the near horizon background of the bound state of source D0-branes. We
elaborate on the relationship of such model to the M theory in the light cone
frame.Comment: 14 pages, RevTeX, revised version with added references to appear in
Phys. Rev.
Flavor Oscillations from a Spatially Localized Source: A Simple General Treatment
A unique description avoiding confusion is presented for all flavor
oscillation experiments in which particles of a definite flavor are emitted
from a localized source. The probability for finding a particle with the wrong
flavor must vanish at the position of the source for all times. This condition
requires flavor-time and flavor-energy factorizations which determine uniquely
the flavor mixture observed at a detector in the oscillation region; i.e. where
the overlaps between the wave packets for different mass eigenstates are almost
complete. Oscillation periods calculated for ``gedanken'' time-measurement
experiments are shown to give the correct measured oscillation wave length in
space when multiplied by the group velocity. Examples of neutrinos propagation
in a weak field and in a gravitational field are given. In these cases the
relative phase is modified differently for measurements in space and time.
Energy-momentum (frequency-wave number) and space-time descriptions are
complementary, equally valid and give the same results. The two identical phase
shifts obtained describe the same physics; adding them together to get a factor
of two is double counting.Comment: 20 pages, revtex, no figure
Topics in Chiral Perturbation Theory
I consider some selected topics in chiral perturbation theory (CHPT). For the
meson sector, emphasis is put on processes involving pions in the isospin zero
S-wave which require multi-loop calculations. The advantages and shortcomings
of heavy baryon CHPT are discussed. Some recent results on the structure of the
baryons are also presented.Comment: 30 pp, TeX, Review talk, Third Workshop on High Energy Particle
Physics (WHEPP III), Madras, India, January 1994. 7 figures available upon
request. CRN--94/0
Expansion for the solutions of the Bogomolny equations on the torus
We show that the solutions of the Bogomolny equations for the Abelian Higgs
model on a two-dimensional torus, can be expanded in powers of a quantity
epsilon measuring the departure of the area from the critical area. This allows
a precise determination of the shape of the solutions for all magnetic fluxes
and arbitrary position of the Higgs field zeroes. The expansion is carried out
to 51 orders for a couple of representative cases, including the unit flux
case. We analyse the behaviour of the expansion in the limit of large areas, in
which case the solutions approach those on the plane. Our results suggest
convergence all the way up to infinite area.Comment: 26 pages, 8 figures, slightly revised version as published in JHE
Unitary Standard Model from Spontaneous Dimensional Reduction and Weak Boson Scattering at the LHC
Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by
a number of quantum gravity approaches which all indicate that the spacetime
dimensions get reduced at high energies. In this work, we formulate an
effective theory of electroweak interactions based upon the standard model,
incorporating the spontaneous reduction of space-dimensions at TeV scale. The
electroweak gauge symmetry is nonlinearly realized with or without a Higgs
boson. We demonstrate that the SDR ensures good high energy behavior and
predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV,
the TeV-scale SDR gives a natural solution to the hierarchy problem. Such a
light Higgs boson can have induced anomalous gauge couplings from the TeV-scale
SDR. We find that the corresponding WW scattering cross sections become unitary
at TeV scale, but exhibit different behaviors from that of the 4d standard
model. These can be discriminated by the WW scattering experiments at the LHC.Comment: 38pp, Eur.Phys.J.(in Press); extended discussions for testing non-SM
Higgs boson(125GeV) via WW scattering; minor clarifications added; references
added; a concise companion is given in the short PLB letter arXiv:1301.457
Chiral restoration effects on the shear viscosity of a pion gas
We investigate the shear viscosity of a pion gas in relativistic kinetic
theory, using the Nambu-Jona-Lasinio model to construct the pion mass and the
pi-pi interaction at finite temperature. Whereas at low temperatures the
scattering properties and, hence, the viscosity are in agreement with
lowest-order chiral perturbation theory, we find strong medium modifications in
the crossover region. Here the system is strongly coupled and the scattering
lengths diverge, similarly as for ultra-cold Fermi gases at a Feshbach
resonance. As a consequence, the ratio eta/s is found to be strongly reduced as
compared to calculations without medium-modified masses and scattering
amplitudes. However, the quantitative results are very sensitive to the details
of the applied approximations.Comment: 15 pages, 12 figures; v2: extended discussions of the dressed sigma
propagator and the low-temperature limit, typos corrected, accepted versio
- …