92 research outputs found
Photon production from a thermalized quark gluon plasma: quantum kinetics and nonperturbative aspects
We study the production of photons from a quark gluon plasma in local thermal
equilibrium by introducing a non-perturbative formulation of the real time
evolution of the density matrix. The main ingredient is the real time effective
action for the electromagnetic field to and to all
orders in . The real time evolution is completely determined by the
solution of a \emph{classical stochastic} non-local Langevin equation which
provides a Dyson-like resummation of the perturbative expansion. The Langevin
equation is solved in closed form by Laplace transform in terms of the thermal
photon polarization. A quantum kinetic description emerges directly from this
formulation. We find that photons with
\emph{thermalize} as plasmon quasiparticles in the plasma on time scales which is of the order of the lifetime of the QGP expected
at RHIC and LHC. We then obtain the direct photon yield to lowest order in
and to leading logarithmic order in in a
\emph{uniform} expansion valid at all time. The yield during a QGP lifetime is systematically larger than that obtained with the
equilibrium formulation and the spectrum features a distinct flattening for . We discuss the window of reliability of our results, the
theoretical uncertainties in \emph{any} treatment of photon emission from a QGP
in LTE and the shortcomings of the customary S-matrix approach.Comment: 31 pages. To appear in Nucl. Phys. A. New section (VII) with response
to and criticism of hep-ph/031222
Determination of nuclear matrix elements in the decay of Sb124 including finite nuclear size effects
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32130/1/0000183.pd
Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering
We compute the chromo-field distributions of static color-dipoles in the
fundamental and adjoint representation of SU(Nc) in the loop-loop correlation
model and find Casimir scaling in agreement with recent lattice results. Our
model combines perturbative gluon exchange with the non-perturbative stochastic
vacuum model which leads to confinement of the color-charges in the dipole via
a string of color-fields. We compute the energy stored in the confining string
and use low-energy theorems to show consistency with the static quark-antiquark
potential. We generalize Meggiolaro's analytic continuation from parton-parton
to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to
high-energy scattering that allows us in principle to calculate S-matrix
elements directly in lattice simulations of QCD. We apply this approach and
compute the S-matrix element for high-energy dipole-dipole scattering with the
presented Euclidean loop-loop correlation model. The result confirms the
analytic continuation of the gluon field strength correlator used in all
earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in
Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional
discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes
theorem, old Appendix A -> Sec.3, several references added
Role of Sterile Neutrino Warm Dark Matter in Rhenium and Tritium Beta Decays
Sterile neutrinos with mass in the range of one to a few keV are important as
extensions of the Standard Model of particle physics and are serious dark
matter (DM) candidates. This DM mass scale (warm DM) is in agreement with both
cosmological and galactic observations. We study the role of a keV sterile
neutrino through its mixing with a light active neutrino in Rhenium 187 and
Tritium beta decays. We pinpoint the energy spectrum of the beta particle, 0 <
T_e < (Q_{beta} - m_s), as the region where a sterile neutrino could be
detected and where its mass m_s could be measured. This energy region is at
least 1 keV away rom the region suitable to measure the mass of the light
active neutrino, located near the endpoint Q_{beta} . The emission of a keV
sterile neutrino in a beta decay could show up as a small kink in the spectrum
of the emitted beta particle. With this in view, we perform a careful
calculation of the Rhenium and Tritium beta spectra and estimate the size of
this perturbation by means of the dimensionless ratio R of the sterile neutrino
to the active neutrino contributions. We comment on the possibility of
searching for sterile neutrino signatures in two experiments which are
currently running at present, MARE and KATRIN, focused on the Rhenium 187 and
Tritium beta decays respectively.Comment: 16 pages, 10 figures. Version to appear in Nucl. Phys. B. Results and
conclusions unchange
S-Matrix Unitarity, Impact Parameter Profiles, Gluon Saturation and High-Energy Scattering
A model combining perturbative and non-perturbative QCD is developed to
compute high-energy reactions of hadrons and photons and to investigate
saturation effects that manifest the S-matrix unitarity. Following a functional
integral approach, the S-matrix factorizes into light-cone wave functions and
the universal amplitude for the scattering of two color-dipoles which are
represented by Wegner-Wilson loops. In the framework of the non-perturbative
stochastic vacuum model of QCD supplemented by perturbative gluon exchange, the
loop-loop correlation is calculated and related to lattice QCD investigations.
With a universal energy dependence motivated by the two-pomeron (soft + hard)
picture that respects the unitarity condition in impact parameter space, a
unified description of pp, pip, Kp, gamma* p, and gamma gamma reactions is
achieved in good agreement with experimental data for cross sections, slope
parameters, and structure functions. Impact parameter profiles for pp and
longitudinal gamma* p reactions and the gluon distribution of the proton
xG(x,Q^2,b) are calculated and found to saturate in accordance with S-matrix
unitarity. The c.m. energies and Bjorken x at which saturation sets in are
determined.Comment: 65 pages with 13 figures, Introduction, Sec. 3, and Conclusion
extende
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset
The Greenland Climate Network (GC-Net) consists of 31 automatic weather stations (AWSs) at 30 sites across the Greenland Ice Sheet. The first site was initiated in 1990, and the project has operated almost continuously since 1995 under the leadership of the late Konrad Steffen. The GC-Net AWS measured air temperature, relative humidity, wind speed, atmospheric pressure, downward and reflected shortwave irradiance, net radiation, and ice and firn temperatures. The majority of the GC-Net sites were located in the ice sheet accumulation area (17 AWSs), while 11 AWSs were located in the ablation area, and two sites (three AWSs) were located close to the equilibrium line altitude. Additionally, three AWSs of similar design to the GC-Net AWS were installed by Konrad Steffen's team on the Larsen C ice shelf, Antarctica. After more than 3 decades of operation, the GC-Net AWSs are being decommissioned and replaced by new AWSs operated by the Geological Survey of Denmark and Greenland (GEUS). Therefore, making a reassessment of the historical GC-Net AWS data is necessary. We present a full reprocessing of the historical GC-Net AWS dataset with increased attention to the filtering of erroneous measurements, data correction and derivation of additional variables: continuous surface height, instrument heights, surface albedo, turbulent heat fluxes, and 10 m ice and firn temperatures. This new augmented GC-Net level-1 (L1) AWS dataset is now available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2023) and will continue to be refined. The processing scripts, latest data and a data user forum are available at https://github.com/GEUS-Glaciology-and-Climate/GC-Net-level-1-data-processing (last access: 30 November 2023). In addition to the AWS data, a comprehensive compilation of valuable metadata is provided: maintenance reports, yearly pictures of the stations and the station positions through time. This unique dataset provides more than 320 station years of high-quality atmospheric data and is available following FAIR (findable, accessible, interoperable, reusable) data and code practices
Measurement of the beam-helicity asymmetry in photoproduction of π0η pairs on carbon, aluminum, and lead
The beam-helicity asymmetry was measured, for the first time, in photoproduction of
π0η pairs on carbon, aluminum, and lead, with the A2 experimental setup at MAMI. The results are compared to an earlier measurement on a free proton and to the corresponding theoretical calculations. The Mainz model is used to predict the beam-helicity asymmetry for the nuclear targets. The present results indicate that the photoproduction mechanism for π0η pairs on nuclei is similar to photoproduction on a free nucleon. This process is dominated by the D33 partial wave with the ηΔ(1232) intermediate state
Chaetopterid tubes from vent and seep sites: Implications for fossil record and evolutionary history of vent and seep annelids
Vestimentiferan tube worms living at deep-sea hydrothermal vents and cold seeps have been considered as a clade with a long and continuing evolutionary history in these ecosystems. Whereas the fossil record appears to support this view, molecular age estimates do not. The two main features that are used to identify vestimentiferan tubes in the fossil record are longitudinal ridges on the tube's surface and a tube wall constructed of multiple layers. It is shown here that chaetopterid tubes from modern vents and seeps—as well as a number of fossil tubes from shallow-water environments—also show these two features. This calls for a more cautious interpretation of tubular fossils from ancient vent and seep deposits. We suggest that: current estimates for a relatively young evolutionary age based on molecular clock methods may be more reliable than the inferences of ancient “vestimentiferans” based on putative fossils of these worms; not all of these putative fossils actually belong to this group; and that tubes from fossil seeps should be investigated for chitinous remains to substantiate claims of their potential siboglinid affinities
- …