1,163 research outputs found
Multiple sclerosis and the microbiota:Progress in understanding the contribution of the gut microbiome to disease
Multiple sclerosis (MS), a neurological autoimmune disorder, has recently been linked to neuro-inflammatory influences from the gut. In this review, we address the idea that evolutionary mismatches could affect the pathogenesis of MS via the gut microbiota. The evolution of symbiosis as well as the recent introduction of evolutionary mismatches is considered, and evidence regarding the impact of diet on the MS-associated microbiota is evaluated. Distinctive microbial community compositions associated with the gut microbiota of MS patients are difficult to identify, and substantial study-to-study variation and even larger variations between individual profiles of MS patients are observed. Furthermore, although some dietary changes impact the progression of MS, MS-associated features of microbiota were found to be not necessarily associated with diet per se. In addition, immune function in MS patients potentially drives changes in microbial composition directly, in at least some individuals. Finally, assessment of evolutionary histories of animals with their gut symbionts suggests that the impact of evolutionary mismatch on the microbiota is less concerning than mismatches affecting helminths and protists. These observations suggest that the benefits of an anti-inflammatory diet for patients with MS may not be mediated by the microbiota per se. Furthermore, any alteration of the microbiota found in association with MS may be an effect rather than a cause. This conclusion is consistent with other studies indicating that a loss of complex eukaryotic symbionts, including helminths and protists, is a pivotal evolutionary mismatch that potentiates the increased prevalence of autoimmunity within a population
Relation between Tunneling and Particle Production in Vacuum Decay
The field-theoretical description of quantum fluctuations on the background
of a tunneling field is revisited in the case of a functional
Schrodinger approach. We apply this method in the case when quantum
fluctuations are coupled to the field through a mass-squared term,
which is 'time-dependent' since we include the dynamics of . The
resulting mode functions of the fluctuation field, which determine the quantum
state after tunneling, display a previously unseen resonance effect when their
mode number is comparable to the curvature scale of the bubble. A detailed
analysis of the relation between the excitations of the field about the true
vacuum (interpreted as particle creation) and the phase shift coming from
tunneling is presented.Comment: 20 pages, 4 figures, submitted to PR
Characterisation of the effectiveness of carbon incorporation in SiGe for the elimination of parasitic energy barriers in SiGe HBT's
An electrical method is applied to SiGe and SiGeC HBTs to extract the bandgap narrowing in the base layer and to characterise the presence of parasitic energy barriers in the conduction band, arising from transient enhanced boron diffusion from the SiGe layer. It is shown that a background carbon concentration with the base of approximately 1E20cm-3 eliminates parasitic energy barriers at the C/B junction and hence shows that transient enhanced diffusion of boron from the base has been completely suppressed
Clusters of Galaxies: magnetic fields and nonthermal emission
The nonthermal particle content of galaxy clusters should in part have a
cosmological component generated during the early starburst phase of the member
galaxies. This is reviewed in the framework of a simple cluster formation model
suggested previously. It implies a nonthermal energy fraction of about 10
percent for the Intracluster gas. We also propose a mechanism for the early
generation of Intracluster magnetic fields in terms of Galactic Winds. It
results in typical field strengths of about 0.1 microGauss. Such comparatively
weak fields are consistent with an inverse Compton origin of the excess EUV and
hard X-ray emission of the Coma cluster, given the radio synchrotron emission.
The required relativistic electrons must have been accelerated rather recently,
less than a few billion years ago, presumably in cluster accretion shocks. This
is in contrast to the hadronic nonthermal component which accumulates on
cosmological time scales, and whose pion-decay TeV gamma-ray emission is
expected to be larger, or of the same order as the inverse Compton TeV
emission. This gamma-radiation characterizes the energetic history of cluster
formation and should be observable with future arrays of imaging atmospheric
Cherenkov telescopes.Comment: 16 pages, 8 figures; invited talk presented at the VERITAS Workshop
on TeV Astrophysics of Extragalactic Sources, submitted to Astroparticle
Physic
Zebrafish models for attention deficit hyperactivity disorder (ADHD)
Attention deficit hyperactivity disorder (ADHD) is a common, debilitating neurodevelopmental disorder associated with inattentiveness, pathological hyperactivity and impulsivity. Despite the mounting human and animal evidence, the neurological pathways underlying ADHD remain poorly understood. Novel translational model organisms, such as the zebrafish (Danio rerio), are becoming important tools to investigate genetic and pathophysiological mechanisms of various neuropsychiatric disorders. Here, we discuss ADHD etiology, existing animal models and their limitations, and emphasize the advantages of using zebrafish to model ADHD. Overall, the growing utility of zebrafish models may improve our understanding of ADHD and facilitate drug discovery to prevent or treat this disorder. © 2019 Elsevier Lt
Deterministically Driven Avalanche Models of Solar Flares
We develop and discuss the properties of a new class of lattice-based
avalanche models of solar flares. These models are readily amenable to a
relatively unambiguous physical interpretation in terms of slow twisting of a
coronal loop. They share similarities with other avalanche models, such as the
classical stick--slip self-organized critical model of earthquakes, in that
they are driven globally by a fully deterministic energy loading process. The
model design leads to a systematic deficit of small scale avalanches. In some
portions of model space, mid-size and large avalanching behavior is scale-free,
being characterized by event size distributions that have the form of
power-laws with index values, which, in some parameter regimes, compare
favorably to those inferred from solar EUV and X-ray flare data. For models
using conservative or near-conservative redistribution rules, a population of
large, quasiperiodic avalanches can also appear. Although without direct
counterparts in the observational global statistics of flare energy release,
this latter behavior may be relevant to recurrent flaring in individual coronal
loops. This class of models could provide a basis for the prediction of large
solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar
Physic
The Primordial Gravitational Wave Background in String Cosmology
We find the spectrum P(w)dw of the gravitational wave background produced in
the early universe in string theory. We work in the framework of String Driven
Cosmology, whose scale factors are computed with the low-energy effective
string equations as well as selfconsistent solutions of General Relativity with
a gas of strings as source. The scale factor evolution is described by an early
string driven inflationary stage with an instantaneous transition to a
radiation dominated stage and successive matter dominated stage. This is an
expanding string cosmology always running on positive proper cosmic time. A
careful treatment of the scale factor evolution and involved transitions is
made. A full prediction on the power spectrum of gravitational waves without
any free-parameters is given. We study and show explicitly the effect of the
dilaton field, characteristic to this kind of cosmologies. We compute the
spectrum for the same evolution description with three differents approachs.
Some features of gravitational wave spectra, as peaks and asymptotic
behaviours, are found direct consequences of the dilaton involved and not only
of the scale factor evolution. A comparative analysis of different treatments,
solutions and compatibility with observational bounds or detection perspectives
is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra
Hospitalisation without delirium is not associated with cognitive decline in a population-based sample of older people-results from a nested, longitudinal cohort study
Background: Acute hospitalisation and delirium have individually been shown to adversely affect trajectories of cognitive decline but have not previously been considered together. This work aimed to explore the impact on cognition of hospital admission with and without delirium, compared to a control group with no hospital admissions. Methods: The Delirium and Cognitive Impact in Dementia (DECIDE) study was nested within the Cognitive Function and Ageing Study II (CFAS II)-Newcastle cohort. CFAS II participants completed two baseline interviews, including the Mini-Mental State Examination (MMSE). During 2016, surviving participants from CFAS II-Newcastle were recruited to DECIDE on admission to hospital. Participants were reviewed daily to determine delirium status. During 2017, all DECIDE participants and age, sex and years of education matched controls without hospital admissions during 2016 were invited to repeat the CFAS II interview. Delirium was excluded in the control group using the Informant Assessment of Geriatric Delirium Scale (i-AGeD). Linear mixed effects modelling determined predictors of cognitive decline. Results: During 2016, 82 of 205 (40%) DECIDE participants had at least one episode of delirium. At 1 year, 135 of 205 hospitalised participants completed an interview along with 100 controls. No controls experienced delirium (i-AGeD>4). Delirium was associated with a faster rate of cognitive decline compared to those without delirium (β =-2.2, P < 0.001), but number of hospital admissions was not (P = 0.447). Conclusions: These results suggest that delirium during hospitalisation rather than hospitalisation per se is a risk factor for future cognitive decline, emphasising the need for dementia prevention studies that focus on delirium intervention
Quantum Interference: From Kaons to Neutrinos (with Quantum Beats in between)
Using the vehicle of resolving an apparent paradox, a discussion of quantum
interference is presented. The understanding of a number of different physical
phenomena can be unified, in this context. These range from the neutral kaon
system to massive neutrinos, not to mention quantum beats, Rydberg wave
packets, and neutron gravity.Comment: 12 pages, LaTeX, 3 figure
- …