563 research outputs found
Clinical effect of IRT-5 probiotics on immune modulation of autoimmunity or alloimmunity in the eye
Background: Although the relation of the gut microbiota to a development of autoimmune and inflammatory diseases has been investigated in various animal models, there are limited studies that evaluate the effect of probiotics in the autoimmune eye disease. Therefore, we aimed to investigate the effect of IRT-5 probiotics consisting of Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium bifidum, and Streptococcus thermophilus on the autoimmunity of uveitis and dry eye and alloimmunity of corneal transplantation. Methods: Experimental autoimmune uveitis was induced by subcutaneous immunization with interphotoreceptor-binding protein and intraperitoneal injection of pertussis toxin in C57BL/6 (B6) mice. For an autoimmune dry eye model, 12-weeks-old NOD.B10.H2b mice were used. Donor cornea of B6 mice was transplanted into BALB/C mice. IRT-5 probiotics or phosphate buffered saline (PBS) were administered for three weeks immediately after induction of uveitis or transplantation. The inflammation score of the retinal tissues, dry eye manifestations (corneal staining and tear secretion), and graft survival were measured in each model. The changes of T cells were evaluated in drainage lymph nodes using fluorescence-activated cell sorting. Results: Retinal histology score in IRT-5 group of uveitis was lower than that in PBS group (p = 0.045). Ocular staining score was lower (p < 0.0001) and tear secretion was higher (p < 0.0001) in the IRT-5 group of NOD.B10.H2b mice than that in the PBS group. However, the graft survival in the IRT-5 group was not different from those of PBS group. The percentage of regulatory T cells was increased in the IRT-5-treated dry eye models (p = 0.032). The percentage of CD8+IL-17hi (p = 0.027) and CD8+ interferon gamma (IFN��)hi cells (p = 0.022) were significantly decreased in the IRT-5-treated uveitis models and the percentage of CD8+IFN��hi cells was markedly reduced (p = 0.036) in IRT-5-treated dry eye model. Conclusion: Our results suggest that administration of IRT-5 probiotics may modulate clinical manifestations of autoimmunity in the eye, but not on alloimmunity of corneal transplantation. ? 2017 by the authors.112Nsciescopu
POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO
Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4–5 g-U/cm3 were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al
Primordial non-Gaussianity in the Bispectrum of the Halo Density Field
The bispectrum vanishes for linear Gaussian fields and is thus a sensitive
probe of non-linearities and non-Gaussianities in the cosmic density field.
Hence, a detection of the bispectrum in the halo density field would enable
tight constraints on non-Gaussian processes in the early Universe and allow
inference of the dynamics driving inflation. We present a tree level derivation
of the halo bispectrum arising from non-linear clustering, non-linear biasing
and primordial non-Gaussianity. A diagrammatic description is developed to
provide an intuitive understanding of the contributing terms and their
dependence on scale, shape and the non-Gaussianity parameter fNL. We compute
the terms based on a multivariate bias expansion and the peak-background split
method and show that non-Gaussian modifications to the bias parameters lead to
amplifications of the tree level bispectrum that were ignored in previous
studies. Our results are in a good agreement with published simulation
measurements of the halo bispectrum. Finally, we estimate the expected signal
to noise on fNL and show that the constraint obtainable from the bispectrum
analysis significantly exceeds the one obtainable from the power spectrum
analysis.Comment: 34 pages, 15 figures, (v3): matches JCAP published versio
Path finding strategies in scale-free networks
We numerically investigate the scale-free network model of Barab{\'a}si and
Albert [A. L. Barab{\'a}si and R. Albert, Science {\bf 286}, 509 (1999)]
through the use of various path finding strategies. In real networks, global
network information is not accessible to each vertex, and the actual path
connecting two vertices can sometimes be much longer than the shortest one. A
generalized diameter depending on the actual path finding strategy is
introduced, and a simple strategy, which utilizes only local information on the
connectivity, is suggested and shown to yield small-world behavior: the
diameter of the network increases logarithmically with the network size
, the same as is found with global strategy. If paths are sought at random,
is found.Comment: 4 pages, final for
Enhanced production of tropane alkaloids in transgenic Scopolia parviflora hairy root cultures over-expressing putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H)
Scopolia parviflora adventitious roots were metabolically engineered by co-expression of the two gene putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H) cDNAs with the aid of Agrobacterium rhizogenes. The transformed roots developed into morphologically distinct S. parviflora PMT1 (SpPMT1), S. parviflora PMT1 (SpPMT2), and S. parviflora H6H (SpH6H) transgenic hairy root lines. Consequent to the introduction of these key enzyme genes, the production of the alkaloids hyoscyamine and scopolamine was enhanced. Among the transgenic hairy root lines, SpPMT2 line possessed the highest growth index. The treatment of transgenic hairy roots with growth regulators further enhanced the production of scopolamine. Thus, the results suggest that PMT1, PMT2, and H6H genes may not only be involved in the metabolic regulation of alkaloid production but also that these genes may play a role in the root development
An efficient algorithm to calculate intrinsic thermoelectric parameters based on Landauer approach
The Landauer approach provides a conceptually simple way to calculate the
intrinsic thermoelectric (TE) parameters of materials from the ballistic to the
diffusive transport regime. This method relies on the calculation of the number
of propagating modes and the scattering rate for each mode. The modes are
calculated from the energy dispersion (E(k)) of the materials which require
heavy computation and often supply energy relation on sparse momentum (k)
grids. Here an efficient method to calculate the distribution of modes (DOM)
from a given E(k) relationship is presented. The main features of this
algorithm are, (i) its ability to work on sparse dispersion data, and (ii)
creation of an energy grid for the DOM that is almost independent of the
dispersion data therefore allowing for efficient and fast calculation of TE
parameters. The inclusion of scattering effects is also straight forward. The
effect of k-grid sparsity on the compute time for DOM and on the sensitivity of
the calculated TE results are provided. The algorithm calculates the TE
parameters within 5% accuracy when the K-grid sparsity is increased up to 60%
for all the dimensions (3D, 2D and 1D). The time taken for the DOM calculation
is strongly influenced by the transverse K density (K perpendicular to
transport direction) but is almost independent of the transport K density
(along the transport direction). The DOM and TE results from the algorithm are
bench-marked with, (i) analytical calculations for parabolic bands, and (ii)
realistic electronic and phonon results for .Comment: 16 Figures, 3 Tables, submitted to Journal of Computational
electronic
The dinophycean genus Azadinium and related species – morphological and molecular characterization, biogeography, and toxins
Peer-reviewed.Azaspiracids (AZAs) are the most recently discovered group of lipophilic marine biotoxins of microalgal origin. It took about twelve years from the first human poisoning event until a culprit for AZA production was unambiguously identified and described as a novel species, Azadinium spinosum, within a newly created genus. Since then, knowledge on the genus has increased considerably, and an update on the current circumscription of the genus is presented here including various aspects of morphology, phylogeny, biogeography, and toxin production. There are currently five described species: A. spinosum, A. obesum, A. poporum, A. caudatum, and A. polongum. As indicated by molecular sequence variation detected in field samples, there are probably more species to recognize. Moreover, Amphidoma languida has been described recently, and this species is the closest relative of Azadinium based on both molecular and morphological data. Amphidoma and Azadinium are now grouped in the family Amphidomataceae, which forms an independent lineage among other monophyletic major groups of dinophytes. Initially, azaspiracids have been detected in A. spinosum only, but AZA production within the Amphidomataceae appears complex and diverse: A new type of azaspiracid, with a number of structural variants, has been detected in A. poporum and Amphidoma languida, and AZA-2 has now been detected in Chinese strains of A. poporum
Numerical study of the thermoelectric power factor in ultra-thin Si nanowires
Low dimensional structures have demonstrated improved thermoelectric (TE)
performance because of a drastic reduction in their thermal conductivity,
{\kappa}l. This has been observed for a variety of materials, even for
traditionally poor thermoelectrics such as silicon. Other than the reduction in
{\kappa}l, further improvements in the TE figure of merit ZT could potentially
originate from the thermoelectric power factor. In this work, we couple the
ballistic (Landauer) and diffusive linearized Boltzmann electron transport
theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB)
electronic structure model. We calculate the room temperature electrical
conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires
(NWs). We describe the numerical formulation of coupling TB to those transport
formalisms, the approximations involved, and explain the differences in the
conclusions obtained from each model. We investigate the effects of cross
section size, transport orientation and confinement orientation, and the
influence of the different scattering mechanisms. We show that such methodology
can provide robust results for structures including thousands of atoms in the
simulation domain and extending to length scales beyond 10nm, and point towards
insightful design directions using the length scale and geometry as a design
degree of freedom. We find that the effect of low dimensionality on the
thermoelectric power factor of Si NWs can be observed at diameters below ~7nm,
and that quantum confinement and different transport orientations offer the
possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201
Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes
Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT–DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler–Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples
- …