1,397 research outputs found

    Spatiotemporal control of root immune responses during microbial colonization.

    Get PDF
    The entire evolutionary trajectory of plants towards large and complex multi-cellular organisms has been accompanied by incessant interactions with omnipresent unicellular microbes. This led to the evolution of highly complex microbial communities, whose members display the entire spectrum of pathogenic to mutualistic behaviors. Plant roots are dynamic, fractally growing organs and even small Arabidopsis roots harbor millions of individual microbes of diverse taxa. It is evident that microbes at different positions on a root surface could experience fundamentally different environments, which, moreover, rapidly change over time. Differences in spatial scales between microbes and roots compares to humans and the cities they inhabit. Such considerations make it evident that mechanisms of root-microbe interactions can only be understood if analyzed at relevant spatial and temporal scales. This review attempts to provide an overview of the rapid recent progress that has been made in mapping and manipulating plant damage and immune responses at cellular resolution, as well as in visualizing bacterial communities and their transcriptional activities. We further discuss the impact that such approaches will have for a more predictive understanding of root-microbe interactions

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented

    Magnetic enhancement of Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide by mechanical milling

    Full text link
    We report the magnetic properties of mechanically milled Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide. After 24 hours milling of the bulk sample, the XRD spectra show nanostructure with average particle size \approx 20 nm. The as milled sample shows an enhancement in magnetization and ordering temperature compared to the bulk sample. If the as milled sample is annealed at different temperatures for the same duration, recrystallization process occurs and approaches to the bulk structure on increasing the annealing temperatures. The magnetization of the annealed samples first increases and then decreases. At higher annealing temperature (\sim 10000^{0}C) the system shows two coexisting magnetic phases {\it i.e.}, spin glass state and ferrimagnetic state, similar to the as prepared bulk sample. The room temperature M\"{o}ssbauer spectra of the as milled sample, annealed at 3000^{0}C for different durations (upto 575 hours), suggest that the observed change in magnetic behaviour is strongly related with cations redistribution between tetrahedral (A) and octahedral (O) sites in the spinel structure. Apart from the cation redistribution, we suggest that the enhancement of magnetization and ordering temperature is related with the reduction of B site spin canting and increase of strain induced anisotropic energy during mechanical milling.Comment: 14 pages LaTeX, 10 ps figure

    Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions

    Get PDF
    The wear and rolling contact fatigue of wheel-rail materials were investigated through varying wheel/rail hardness ratios (Hw/Hr) and creepages. The results indicated that with the Hw/Hr increasing from 0.927 to 1.218, the wheel wear rate reduced significantly in the case of Hw/Hr = 1.218, the rail wear rate showed an increasing trend. Both the wheel and rail wear rates increased as the creepage enlarged. The synergistic results of Hw/Hr and creepage caused a transition of the wear and damage mechanisms on the wheel-rail steels. Besides, the fatigue damage of ER7 and CL60 wheel materials was dominated by slender multi-layer cracks, while the fatigue cracks were short and contained lots of interlayer broken materials on C-class wheel steel

    Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic

    Get PDF
    Bi(Sc 1/3 Mo 2/3 )O 4 ceramics were prepared via solid state reaction method. It crystallized with an ordered scheelite-related structure (a = 16.9821(9) Å, b = 11.6097(3) Å, c = 5.3099(3) Å and β = 104.649(2)°) with a space group C12/C1, in which Bi 3+ , Sc 3+ and Mo 6+ are -8, -6 and -4 coordinated, respectively. Bi(Sc 1/3 Mo 2/3 )O 4 ceramics were densifiedat 915 °C, giving a permittivity (ε r ) 24.4, quality factor (Qf, Q = 1/dielectric loss, f = resonant frequency) ~48, 100 GHz and temperature coefficient of resonant frequency (TCF) -68 ppm/°C. Impedance spectroscopy revealed that there was only a bulk response for conductivity with activation energy (E a ) ~0.97 eV, suggesting the compound is electrically and chemically homogeneous. Wide band dielectric spectra were employed to study the dielectric response of Bi(Sc 1/3 Mo 2/3 )O 4 from 20 Hz to 30 THz. ε r was stable from 20 Hz to the GHz region, in which only ionic and electron displacive polarization contributed to the ε r

    Microscopic nonequilibrium theory of double-barrier Josephson junctions

    Get PDF
    We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary phenomena, using the time-dependent quasiclassical Keldysh Green's function formalism. We supplement the kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the quasiparticle current can show excess current as well as deficit current and how the subgap conductance behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution function is found to cause a non-zero averaged supercurrent even in the presence of an applied voltage. Energy relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport properties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier junctions can be explained in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    corecore