1,012 research outputs found
Status of a DEPFET pixel system for the ILC vertex detector
We have developed a prototype system for the ILC vertex detector based on
DEPFET pixels. The system operates a 128x64 matrix (with ~35x25 square micron
large pixels) and uses two dedicated microchips, the SWITCHER II chip for
matrix steering and the CURO II chip for readout. The system development has
been driven by the final ILC requirements which above all demand a detector
thinned to 50 micron and a row wise read out with line rates of 20MHz and more.
The targeted noise performance for the DEPFET technology is in the range of
ENC=100 e-. The functionality of the system has been demonstrated using
different radioactive sources in an energy range from 6 to 40keV. In recent
test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120
has been achieved with present sensors being 450 micron thick. For improved
DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40
is expected.Comment: Invited poster at the International Symposium on the Development of
Detectors for Particle, AstroParticle and Synchrotron Radiation Experiments,
Stanford CA (SNIC06) 6 pages, 12 eps figure
A comparison of the phosphorylated and unphosphorylated forms of isocitrate dehydrogenase from Escherichia coli ML308
AbstractNADP+ can protect active isocitrate dehydrogenase against attack by several proteases. Inactive phosphorylated isocitrate dehydrogenase is much less susceptible to proteolysis than the active enzyme, and it is not protected by NADP+. The results suggest that binding of NADP+ to, or phosphorylation of, active isocitrate dehydrogenase induces similar conformational states. Fluorescence titration experiments show that NADPH can bind to active but not to inactive isocitrate dehydrogenase. It is suggested that the phosphorylation of isocitrate dehydrogenase may occur close to its coenzyme binding site
Accessing directly the properties of fundamental scalars in the confinement and Higgs phase
The properties of elementary particles are encoded in their respective
propagators and interaction vertices. For a SU(2) gauge theory coupled to a
doublet of fundamental complex scalars these propagators are determined in both
the Higgs phase and the confinement phase and compared to the Yang-Mills case,
using lattice gauge theory. Since the propagators are gauge-dependent, this is
done in the Landau limit of 't Hooft gauge, permitting to also determine the
ghost propagator. It is found that neither the gauge boson nor the scalar
differ qualitatively in the different cases. In particular, the gauge boson
acquires a screening mass, and the scalar's screening mass is larger than the
renormalized mass. Only the ghost propagator shows a significant change.
Furthermore, indications are found that the consequences of the residual
non-perturbative gauge freedom due to Gribov copies could be different in the
confinement and the Higgs phase.Comment: 11 pages, 6 figures, 1 table; v2: one minor error corrected; v3: one
appendix on systematic uncertainties added and some minor changes, version to
appear in EPJ
Charge-ordering phase transition and order-disorder effects in the Raman spectra of NaV2O5
In the ac polarized Raman spectra of NaV2O5 we have found anomalous phonon
broadening, and an energy shift of the low-frequency mode as a function of the
temperature. These effects are related to the breaking of translational
symmetry, caused by electrical disorder that originates from the fluctuating
nature of the V {4.5+} valence state of vanadium. The structural correlation
length, obtained from comparisons between the measured and calculated Raman
scattering spectra, diverges at T< 5 K, indicating the existence of the
long-range charge order at very low temperatures, probably at T=0 K.Comment: 8 pages, 4 figures, new version, to appear in PR
Dzyaloshinskii-Moriya interaction in NaVO: a microscopic study
We present a unified account of magnetic exchange and Raman scattering in the
quasi-one-dimensional transition-metal oxide NaVO. Based on a
cluster-model approach explicit expressions for the exchange integral and the
Raman-operator are given. It is demonstrated that a combination of the
electronic-structure and the Dzyaloshinskii-Moriya interaction, allowed by
symmetry in this material, are responsible for the finite Raman cross-section
giving rise to both, one- and two-magnon scattering amplitudes.Comment: 7 pages, 1 figur
Inclusive production of charged pions in p+C collisions at 158 GeV/c beam momentum
The production of charged pions in minimum bias p+C interactions is studied
using a sample of 377000 inelastic events obtained with the NA49 detector at
the CERN SPS at 158 GeV/c beam momentum. The data cover a phase space area
ranging from 0 to 1.8 GeV/c in transverse momentum and from -0.1 to 0.5 in
Feynman x. Inclusive invariant cross sections are given on a grid of 270 bins
per charge thus offering for the first time a dense coverage of the projectile
hemisphere and of the cross-over region into the target fragmentation zone.Comment: 31 pages, 30 figures, submitted to European Journal of Physic
Lattice vibrations of alpha'-NaV_2O_5 in the low-temperature phase. Magnetic bound states?
We report high resolution polarized infrared studies of the quarter-filled
spin ladder compound alpha'-NaV_2O_5 as a function of temperature (5K <= T <=
300K). Numerous new modes were detected below the temperature T_c=34K of the
phase transition into a charge ordered nonmagnetic state accompanied by a
lattice dimerization. We analyse the Brillouin zone (BZ) folding due to lattice
dimerization at T_c and show that some peculiarities of the low-temperature
vibrational spectrum come from quadruplets folded from the BZ point (1/2, 1/2,
1/4). We discuss an earlier interpretation of the 70, 107, and 133cm-1 modes as
magnetic bound states and propose the alternative interpretation as folded
phonon modes strongly interacting with charge and spin excitations.Comment: 15 pages, 13 Postscript figure
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
- …