46,764 research outputs found
Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations (the effects of some rotor feedback systems on rotor-body dynamics), Phase 7-A
The effects of three gyroless rotor feedback systems: (1) coning feedback, (2) proportional tilting feedback, and (3) a combination of these on the rotor-body dynamics of hingeless rotorcraft are studied with a simplified analytical model in the advance ratio range from 0 to .8. Combinations of feedback phase angles and control phase angles are selected to minimize control cross coupling and control sensitivity changes between low and high speed flight. For the feedback systems thus selected the effects of feedback gain and control actuator time lag on the stability both with fixed hub and in free flight is studied, whereby the rotorcraft is free in pitch, roll and vertical motion but otherwise restrained. For the free flight is studied, whereby the rotorcraft is free in pitch, roll and vertical motion but otherwise restrained. For the free flight conditions the effects of a horizontal tail are also determined in itself and in combination with the rotor feedback systems
Finite Element Stability Analysis for Coupled Rotor and Support Systems
The effects of fuselage motions on stability and random response were analytically assessed. The feasibility of adequate perturbation models from non-linear trim conditions was studied by computer and hardware experiments. Rotor wake-blade interactions were assessed by using a 4-bladed rotor model with the capability of progressing and regressing blade pitch excitation (cyclic pitch stirring), by using a 4-bladed rotor model with hub tilt stirring, and by testing rotor models in sinusoidal up or side flow
Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations. Phase 6-A: Effects of blade torsion, of blade flap bending flexibility and of rotor support flexibility on rotor stability and random response
The effects of lifting rotor blade torsion, blade flap bending flexibility and rotor support flexibility on rotor stability and random response are described. The subjects discussed are: (1) blade representation and method of analysis, (2) random gust response statistics for coupled torsion-flapping rotor blade vibrations, (3) flap bending corrections to the rigid blade analysis of lifting rotors, and (4) effects of rotor support flexibility. The response of linear periodically time varying systems to random excitation is examined
Rotor dynamic state and parameter identification from simulated forward flight transients, part 1
State and parameter identifications from simulated forward flight blade flapping measurements are presented. The transients were excited by progressing cyclic pitch stirring or by hub stirring with constant stirring acceleration. Rotor dynamic inflow models of varying degree of sophistication were used from a one parameter inflow model (equivalent Lock number) to an eight parameter inflow model. The maximum likelihood method with assumed fixed measurement error covariance matrix was applied. The rotor system equations for both fixed hub and tilting hub are given. The identified models were verified by comparing true responses with predicted responses. An optimum utilization of the simulated measurement data can be defined. From the numerical results it can be anticipated that brief periods of either accelerated cyclic pitch stirring or of hub stirring are sufficient to extract with adequate accuracy up to 8 rotor dynamic inflow parameters plus the blade Lock number from the transients
Methods Studies on System Identification from Transient Rotor Tests
Some of the more important methods are discussed that have been used or proposed for aircraft parameter identification. The methods are classified into two groups: Equation error or regression estimates and Bayesian estimates and their derivatives that are based on probabilistic concepts. In both of these two groups the cost function can be optimized either globally over the entire time span of the transient, or sequentially, leading to the formulation of optimum filters. Identifiability problems and the validation of the estimates are briefly outlined, and applications to lifting rotors are discussed
Two gamma quarkonium and positronium decays with Two-Body Dirac equations of constraint dynamics
Two-Body Dirac equations of constraint dynamics provide a covariant framework
to investigate the problem of highly relativistic quarks in meson bound states.
This formalism eliminates automatically the problems of relative time and
energy, leading to a covariant three dimensional formalism with the same number
of degrees of freedom as appears in the corresponding nonrelativistic problem.
It provides bound state wave equations with the simplicity of the
nonrelativistic Schroedinger equation. Unlike other three-dimensional
truncations of the Bethe-Salpeter equation, this covariant formalism has been
thoroughly tested in nonperturbatives contexts in QED, QCD, and nucleon-nucleon
scattering. Here we continue the important studies of this formalism by
extending a method developed earlier for positronium decay into two photons to
tests on the sixteen component quarkonium wave function solutions obtained in
meson spectroscopy. We examine positronium decay and then the two-gamma
quarkonium decays of eta_c, eta'_c, chi_0c, chi_2c, and pi-zero The results for
the pi-zero, although off the experimental rate by 13%, is much closer than the
usual expectations from a potential model.Comment: 4 pages. Presented at Second Meeting of APS Topical Group on Hadron
Physics, Nashville, TN, Oct 22-24. Proceedings to be published by Journal of
Physics (UK), Conference Serie
Competing Phases, Strong Electron-Phonon Interaction and Superconductivity in Elemental Calcium under High Pressure
The observed "simple cubic" (sc) phase of elemental Ca at room temperature in
the 32-109 GPa range is, from linear response calculations, dynamically
unstable. By comparing first principle calculations of the enthalpy for five
sc-related (non-close-packed) structures, we find that all five structures
compete energetically at room temperature in the 40-90 GPa range, and three do
so in the 100-130 GPa range. Some competing structures below 90 GPa are
dynamically stable, i.e., no imaginary frequency, suggesting that these
sc-derived short-range-order local structures exist locally and can account for
the observed (average) "sc" diffraction pattern. In the dynamically stable
phases below 90 GPa, some low frequency phonon modes are present, contributing
to strong electron-phonon (EP) coupling as well as arising from the strong
coupling. Linear response calculations for two of the structures over 120 GPa
lead to critical temperatures in the 20-25 K range as is observed, and do so
without unusually soft modes.Comment: 8 pages, 6 figures, 1 table, accepted for publication in Phys. Rev.
Universal local pair correlations of Lieb-Liniger bosons at quantum criticality
The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system
featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion
quantum criticality. We analytically calculate finite temperature local pair
correlations for the strong coupling Bose gas at quantum criticality using the
polylog function in the framework of the Yang-Yang thermodynamic equations. We
show that the local pair correlation has the universal value in the quantum critical regime, the TLL phase and the
quasi-classical region, where is the pressure per unit length rescaled by
the interaction energy with interaction
strength and linear density . This suggests the possibility to test
finite temperature local pair correlations for the TLL in the relativistic
dispersion regime and to probe quantum criticality with the local correlations
beyond the TLL phase. Furthermore, thermodynamic properties at high
temperatures are obtained by both high temperature and virial expansion of the
Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference
- …