2,773 research outputs found

    DNA dependent synthesis of protein L12 from escherichia coli ribosomes, in vitro.

    Full text link

    Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction, and metal diffusion on galaxy formation

    Get PDF
    Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback in Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid metal diffusion from unresolved turbulence. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological "zoom-in" simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modeled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs) . In contrast, removing stellar feedback leads to SFRs being over-predicted by factors of 10100\sim 10 -100. Without feedback, neither galactic winds nor volume filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scale-heights with unphysically dense clumps congregating at the galactic center. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions and for the investigated halo mass range 10101013M10^{10}-10^{13} M_{\odot}, the additional physics investigated here (MHD, conduction, viscosity, metal diffusion) have only weak (10%\sim10\%-level) effects on regulating SFR and altering the balance of phases, outflows, or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities, and feedback. We add the caveat that AGN feedback is not included in the present work

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    The failure of stellar feedback, magnetic fields, conduction, and morphological quenching in maintaining red galaxies

    Get PDF
    The quenching "maintenance'" and related "cooling flow" problems are important in galaxies from Milky Way mass through clusters. We investigate this in halos with masses 10121014M\sim 10^{12}-10^{14}\,{\rm M}_{\odot}, using non-cosmological high-resolution hydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model. We specifically focus on physics present without AGN, and show that various proposed "non-AGN" solution mechanisms in the literature, including Type Ia supernovae, shocked AGB winds, other forms of stellar feedback (e.g. cosmic rays), magnetic fields, Spitzer-Braginskii conduction, or "morphological quenching" do not halt or substantially reduce cooling flows nor maintain "quenched" galaxies in this mass range. We show that stellar feedback (including cosmic rays from SNe) alters the balance of cold/warm gas and the rate at which the cooled gas within the galaxy turns into stars, but not the net baryonic inflow. If anything, outflowing metals and dense gas promote additional cooling. Conduction is important only in the most massive halos, as expected, but even at 1014M\sim 10^{14}\,{\rm M}_{\odot} reduces inflow only by a factor 2\sim 2 (owing to saturation effects and anisotropic suppression). Changing the morphology of the galaxies only slightly alters their Toomre-QQ parameter, and has no effect on cooling (as expected), so has essentially no effect on cooling flows or maintaining quenching. This all supports the idea that additional physics, e.g., AGN feedback, must be important in massive galaxies.Comment: 16 pages, 12 figure

    Thermodynamics and magnetic field profiles in low-kappa type-II superconductors

    Full text link
    Two-dimensional low-kappa type-II superconductors are studied numerically within the Eilenberger equations of superconductivity. Depending on the Ginzburg-Landau parameter \kappa=\lambda/\xi vortex-vortex interaction can be attractive or purely repulsive. The sign of interaction is manifested as a first (second) order phase transition from Meissner to the mixed state. Temperature and field dependence of the magnetic field distribution in low-kappa type-II superconductors with attractive intervortex interaction is calculated. Theoretical results are compared to the experiment.Comment: 4 pages, 3 figure

    The origins and effects of macroeconomic uncertainty

    Get PDF
    We estimate a production‐based general equilibrium model featuring demand‐ and supply‐side uncertainty and an endogenous term premium. Using term structure and macroeconomic data, we find sizable effects of uncertainty on risk premia and business cycle fluctuations. Both demand‐ and supply‐side uncertainty imply large contractions in real activity and an increase in term premia, but supply‐side uncertainty has larger effects on inflation and investment. We introduce a novel analytical decomposition to illustrate how multiple distinct endogenous risk wedges account for these differences. Supply and demand uncertainty are strongly correlated in the beginning of our sample, but decouple after the Great Recession
    corecore