2,773 research outputs found
Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction, and metal diffusion on galaxy formation
Using high-resolution simulations with explicit treatment of stellar feedback
physics based on the FIRE (Feedback in Realistic Environments) project, we
study how galaxy formation and the interstellar medium (ISM) are affected by
magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and
sub-grid metal diffusion from unresolved turbulence. We consider controlled
simulations of isolated (non-cosmological) galaxies but also a limited set of
cosmological "zoom-in" simulations. Although simulations have shown significant
effects from these physics with weak or absent stellar feedback, the effects
are much weaker than those of stellar feedback when the latter is modeled
explicitly. The additional physics have no systematic effect on galactic star
formation rates (SFRs) . In contrast, removing stellar feedback leads to SFRs
being over-predicted by factors of . Without feedback, neither
galactic winds nor volume filling hot-phase gas exist, and discs tend to
runaway collapse to ultra-thin scale-heights with unphysically dense clumps
congregating at the galactic center. With stellar feedback, a multi-phase,
turbulent medium with galactic fountains and winds is established. At currently
achievable resolutions and for the investigated halo mass range
, the additional physics investigated here (MHD,
conduction, viscosity, metal diffusion) have only weak (-level)
effects on regulating SFR and altering the balance of phases, outflows, or the
energy in ISM turbulence, consistent with simple equipartition arguments. We
conclude that galactic star formation and the ISM are primarily governed by a
combination of turbulence, gravitational instabilities, and feedback. We add
the caveat that AGN feedback is not included in the present work
Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3
We studied the defects of Bi2Se3 generated from Bridgman growth of
stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size,
and transport properties are strongly affected by the types of defect
generated. Major defect types of Bi_Se antisite and partial Bi_2-layer
intercalation are identified through combined studies of direct atomic-scale
imaging with scanning transmission electron microscopy (STEM) in conjunction
with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and
Hall effect measurements. We propose a consistent explanation to the origin of
defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure
A low-cost time-hopping impulse radio system for high data rate transmission
We present an efficient, low-cost implementation of time-hopping impulse
radio that fulfills the spectral mask mandated by the FCC and is suitable for
high-data-rate, short-range communications. Key features are: (i) all-baseband
implementation that obviates the need for passband components, (ii) symbol-rate
(not chip rate) sampling, A/D conversion, and digital signal processing, (iii)
fast acquisition due to novel search algorithms, (iv) spectral shaping that can
be adapted to accommodate different spectrum regulations and interference
environments. Computer simulations show that this system can provide 110Mbit/s
at 7-10m distance, as well as higher data rates at shorter distances under FCC
emissions limits. Due to the spreading concept of time-hopping impulse radio,
the system can sustain multiple simultaneous users, and can suppress narrowband
interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special
Issue on UWB - State of the Art
The failure of stellar feedback, magnetic fields, conduction, and morphological quenching in maintaining red galaxies
The quenching "maintenance'" and related "cooling flow" problems are
important in galaxies from Milky Way mass through clusters. We investigate this
in halos with masses , using
non-cosmological high-resolution hydrodynamic simulations with the FIRE-2
(Feedback In Realistic Environments) stellar feedback model. We specifically
focus on physics present without AGN, and show that various proposed "non-AGN"
solution mechanisms in the literature, including Type Ia supernovae, shocked
AGB winds, other forms of stellar feedback (e.g. cosmic rays), magnetic fields,
Spitzer-Braginskii conduction, or "morphological quenching" do not halt or
substantially reduce cooling flows nor maintain "quenched" galaxies in this
mass range. We show that stellar feedback (including cosmic rays from SNe)
alters the balance of cold/warm gas and the rate at which the cooled gas within
the galaxy turns into stars, but not the net baryonic inflow. If anything,
outflowing metals and dense gas promote additional cooling. Conduction is
important only in the most massive halos, as expected, but even at reduces inflow only by a factor (owing to
saturation effects and anisotropic suppression). Changing the morphology of the
galaxies only slightly alters their Toomre- parameter, and has no effect on
cooling (as expected), so has essentially no effect on cooling flows or
maintaining quenching. This all supports the idea that additional physics,
e.g., AGN feedback, must be important in massive galaxies.Comment: 16 pages, 12 figure
Thermodynamics and magnetic field profiles in low-kappa type-II superconductors
Two-dimensional low-kappa type-II superconductors are studied numerically
within the Eilenberger equations of superconductivity. Depending on the
Ginzburg-Landau parameter \kappa=\lambda/\xi vortex-vortex interaction can be
attractive or purely repulsive. The sign of interaction is manifested as a
first (second) order phase transition from Meissner to the mixed state.
Temperature and field dependence of the magnetic field distribution in
low-kappa type-II superconductors with attractive intervortex interaction is
calculated. Theoretical results are compared to the experiment.Comment: 4 pages, 3 figure
The origins and effects of macroeconomic uncertainty
We estimate a production‐based general equilibrium model featuring demand‐ and supply‐side uncertainty and an endogenous term premium. Using term structure and macroeconomic data, we find sizable effects of uncertainty on risk premia and business cycle fluctuations. Both demand‐ and supply‐side uncertainty imply large contractions in real activity and an increase in term premia, but supply‐side uncertainty has larger effects on inflation and investment. We introduce a novel analytical decomposition to illustrate how multiple distinct endogenous risk wedges account for these differences. Supply and demand uncertainty are strongly correlated in the beginning of our sample, but decouple after the Great Recession
- …