86 research outputs found
Thermal Stability of Self-Assembled Monolayers of n-Hexanethiol on Au(111)-(1 × 1) and Au(001)-(1 × 1)
Thermal desorption in an ultrahigh vacuum of n-hexanethiol (C6T) self-assembled monolayers (SAMs) prepared from ethanolic solutions on Au(111) and Au(001) unreconstructed surfaces was investigated by X-ray photoelectron spectroscopy. The SAMs desorption was performed from room temperature (RT) to 380 K. We report that the hexanethiolate surface saturation coverage is bigger (∼0.4 ML) for the SAM on Au(001) than on Au(111) (∼0.33 ML). We identified a greater stability for C6T SAMs on Au(001). Large amounts of physisorbed species were found on preferred oriented (111) polycrystalline Au at the low coverage regime at RT, while the SAM on the Au(001) single crystal at this conditions desorbs at a steady pace. At 340 K, both SAMs remain stable at the coverage expected for the lying-down phases that maximizes the van der Waals interactions. We observe that at higher temperatures the carbon alpha-sulfur bond breaks, producing free S on both gold surfaces.Fil: Cristina, Lucila Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Ruano Sandoval, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Salvarezza, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ferron, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Materiales; Argentin
Ultrafast ring opening in CHD investigated by simplex-based spectral unmixing
We use spectral unmixing to determine the number of transient photoproducts
and to track their evolution following the photo- excitation of
1,3-cyclohexadiene (CHD) to form 1,3,5-hexatriene (HT) in the gas phase. The
ring opening is initiated with a 266 nm ultraviolet laser pulse and probed via
fragmentation with a delayed intense infrared 800 nm laser pulse. The ion
time-of-flight (TOF) spectra are analyzed with a simplex-based spectral
unmixing technique. We find that at least three independent spectra are needed
to model the transient TOF spectra. Guided by mathematical and physical
constraints, we decompose the transient TOF spectra into three spectra
associated with the presence of CHD, CHD+, and HT, and show how these three
products appear at different times during the ring opening
Gradient-dependent density functionals of the PBE type for atoms, molecules and solids
One of the standard generalized-gradient approximations (GGAs) in use in
modern electronic-structure theory, PBE, and a recently proposed modification
designed specifically for solids, PBEsol, are identified as particular members
of a family of functionals taking their parameters from different properties of
homogeneous or inhomogeneous electron liquids. Three further members of this
family are constructed and tested, together with the original PBE and PBEsol,
for atoms, molecules and solids. We find that PBE, in spite of its popularity
in solid-state physics and quantum chemistry, is not always the best performing
member of the family, and that PBEsol, in spite of having been constructed
specifically for solids, is not the best for solids. The performance of GGAs
for finite systems is found to sensitively depend on the choice of constraints
steaming from infinite systems. Guidelines both for users and for developers of
density functionals emerge from this work.Comment: 4 pages, PRB Rapid Comm. accepte
The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis
The heats of formation of haloacetylenes are evaluated using the recent W1
and W2 ab initio computational thermochemistry methods. These calculations
involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh
quality, extrapolations to the one-particle basis set limit, and contributions
of inner-shell correlation, scalar relativistic effects, and (where relevant)
first-order spin-orbit coupling. The heats of formation determined using W2
theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol,
\hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21
kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and
destabilization energies relative to acetylene were obtained at the W1 level of
theory. So doing we find the following destabilization order for acetylenes:
FCCF ClCCF HCCF ClCCCl HCCCl HCCH. By a combination of W1
theory and isodesmic reactions, we show that the generally accepted heat of
formation of 1,2-dichloroethane should be revised to -31.80.6 kcal/mol, in
excellent agreement with a very recent critically evaluated review. The
performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3
theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue
Benchmark thermochemistry of the C_nH_{2n+2} alkane isomers (n=2--8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria
The thermochemistry of linear and branched alkanes with up to eight carbons
has been reexamined by means of W4, W3.2lite and W1h theories. `Quasi-W4'
atomization energies have been obtained via isodesmic and hypohomodesmotic
reactions. Our best atomization energies at 0 K (in kcal/mol) are: 1220.04
n-butane, 1497.01 n-pentane, 1774.15 n-hexane, 2051.17 n-heptane, 2328.30
n-octane, 1221.73 isobutane, 1498.27 isopentane, 1501.01 neopentane, 1775.22
isohexane, 1774.61 3-methylpentane, 1775.67 diisopropyl, 1777.27 neohexane,
2052.43 isoheptane, 2054.41 neoheptane, 2330.67 isooctane, and 2330.81
hexamethylethane. Our best estimates for are: -30.00
n-butane, -34.84 n-pentane, -39.84 n-hexane, -44.74 n-heptane, -49.71 n-octane,
-32.01 isobutane, -36.49 isopentane, -39.69 neopentane, -41.42 isohexane,
-40.72 3-methylpentane, -42.08 diisopropyl, -43.77 neohexane, -46.43
isoheptane, -48.84 neoheptane, -53.29 isooctane, and -53.68 hexamethylethane.
These are in excellent agreement (typically better than 1 kJ/mol) with the
experimental heats of formation at 298 K obtained from the CCCBDB and/or NIST
Chemistry WebBook databases. However, at 0 K a large discrepancy between theory
and experiment (1.1 kcal/mol) is observed for only neopentane. This deviation
is mainly due to the erroneous heat content function for neopentane used in
calculating the 0 K CCCBDB value. The thermochemistry of these systems,
especially of the larger alkanes, is an extremely difficult test for density
functional methods. A posteriori corrections for dispersion are essential.
Particularly for the atomization energies, the B2GP-PLYP and B2K-PLYP
double-hybrids, and the PW6B95 hybrid-meta GGA clearly outperform other DFT
functionals.Comment: (J. Phys. Chem. A, in press
- …