55 research outputs found
Distinct Functional Roles of beta-Tubulin Isotypes inMicrotubule Arrays of Tetrahymena thermophila, aModel Single-Celled Organism
Background
The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2.
Methodology/Principal Findings
With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically.
Conclusion/Significance
We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis
Sub-Antarctic and High Antarctic Notothenioid Fishes: Ecology and Adaptational Biology Revealed by the ICEFISH 2004 Cruise of RVIB Nathaniel B. Palmer
The goal of the ICEFISH 2004 cruise, which was conducted on board RVIB Nathaniel B. Palmer and traversed the transitional zones linking the South Atlantic to the Southern Ocean, was to compare the evolution, ecology, adaptational biology, community structure, and population dynamics of Antarctic notothenioid fishes relative to the cool/temperate notothenioids of the sub-Antarctic. To place this work in a comprehensive ecological context, cruise participants surveyed the benthos and geology of the biogeographic provinces and island shelves on either side of the Antarctic Polar Front (or Antarctic Convergence). Genome-enabled comparison of the responses of cold-living and temperate notothenioids to heat stress confirmed the sensitivity of the former to a warming Southern Ocean. Successful implementation of the international and interdisciplinary ICEFISH research cruise provides a model for future exploration of the sub-Antarctic sectors of the Indian and Pacific Oceans
Recommended from our members
Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine?
The evolution of antifreeze glycoproteins has enabled notothenioid fish to flourish in the freezing waters of the Southern Ocean. Whereas successful at the biodiversity level to life in the cold, paradoxically at the cellular level these stenothermal animals have problems producing, folding, and degrading proteins at their ambient temperatures of -1.86 °C. In this first multi-species transcriptome comparison of the amino acid composition of notothenioid proteins with temperate teleost proteins, we show that, unlike psychrophilic bacteria, Antarctic fish provide little evidence for the mass alteration of protein amino acid composition to enhance protein folding and reduce protein denaturation in the cold. The exception was the significant overrepresentation of positions where leucine in temperate fish proteins was replaced by methionine in the notothenioid orthologues. We hypothesize that these extra methionines have been preferentially assimilated into the genome to act as redox sensors in the highly oxygenated waters of the Southern Ocean. This redox hypothesis is supported by analyses of notothenioids showing enrichment of genes associated with responses to environmental stress, particularly reactive oxygen species. So overall, although notothenioid fish show cold-associated problems with protein homeostasis, they may have modified only a selected number of biochemical pathways to work efficiently below 0 °C. Even a slight warming of the Southern Ocean might disrupt the critical functions of this handful of key pathways with considerable impacts for the functioning of this ecosystem in the future
Assisted protein folding at low temperature: evolutionaryadaptation of the Antarctic fish chaperonin CCT and its clientproteins
Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT–CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT–CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lo¨nnberg) (habitat/body T=-1.9 to +2˚C), and of the cow (body T=37˚C). We examined the temperature dependence of the binding of denatured CPs (bactin, b-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between 24˚C and 20˚C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2˚C. The ATPase activity of apo-CCT from G. gibberifrons at 4˚C was, 2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20˚C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits
A parasite outbreak in notothenioid fish in an Antarctic fjord
20 pages, 4 figures, supplemental information https://doi.org/10.1016/j.isci.2022.104588.-- Data and code availability:
• All data have been deposited at NCBI GenBank: OL630144 and OL630145, NCBI SRA BioProject: PRJNA789574, at MorphoSource Project: 000405843, and at USAP-DC Project: p0010221, and are publicly available as of the date of publication. Biological materials have been deposited at the Zoological Museum of the University of Copenhagen. Additional accession numbers and DOIs are listed in the key resources.
• This paper does not report original code.
• Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon requestClimate changes can promote disease outbreaks, but their nature and potential impacts in remote areas have received little attention. In a hot spot of biodiversity on the West Antarctic Peninsula, which faces among the fastest changing climates on Earth, we captured specimens of two notothenioid fish species affected by large skin tumors at an incidence never before observed in the Southern Ocean. Molecular and histopathological analyses revealed that X-cell parasitic alveolates, members of a genus we call Notoxcellia, are the etiological agent of these tumors. Parasite-specific molecular probes showed that xenomas remained within the skin but largely outgrew host cells in the dermis. We further observed that tumors induced neovascularization in underlying tissue and detrimentally affected host growth and condition. Although many knowledge gaps persist about X-cell disease, including its mode of transmission and life cycle, these findings reveal potentially active biotic threats to vulnerable Antarctic ecosystemsThis work was funded by the National Science Foundation grants OPP-1947040 (JHP and ArV), PLR-1444167 (HWD), and OPP-1543383 (JHP, TD, and HWD)With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe
Recommended from our members
Antarctic genomics.
With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies.Peer Reviewe
Genomics of cold adaptations in the Antarctic notothenioid fish radiation
Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes
Robotic injection of zebrafish embryos for high-throughput screening in disease models
The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines
Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes
Background
Pedomorphism is the retention of ancestrally juvenile traits by adults in a descendant taxon. Despite its importance for evolutionary change, there are few examples of a molecular basis for this phenomenon. Notothenioids represent one of the best described species flocks among marine fishes, but their diversity is currently threatened by the rapidly changing Antarctic climate. Notothenioid evolutionary history is characterized by parallel radiations from a benthic ancestor to pelagic predators, which was accompanied by the appearance of several pedomorphic traits, including the reduction of skeletal mineralization that resulted in increased buoyancy. Results
We compared craniofacial skeletal development in two pelagic notothenioids, Chaenocephalus aceratus and Pleuragramma antarcticum, to that in a benthic species, Notothenia coriiceps, and two outgroups, the threespine stickleback and the zebrafish. Relative to these other species, pelagic notothenioids exhibited a delay in pharyngeal bone development, which was associated with discrete heterochronic shifts in skeletal gene expression that were consistent with persistence of the chondrogenic program and a delay in the osteogenic program during larval development. Morphological analysis also revealed a bias toward the development of anterior and ventral elements of the notothenioid pharyngeal skeleton relative to dorsal and posterior elements. Conclusions
Our data support the hypothesis that early shifts in the relative timing of craniofacial skeletal gene expression may have had a significant impact on the adaptive radiation of Antarctic notothenioids into pelagic habitats
- …