112 research outputs found
Universal gradings of orders
For commutative rings, we introduce the notion of a {\em universal grading},
which can be viewed as the "largest possible grading". While not every
commutative ring (or order) has a universal grading, we prove that every {\em
reduced order} has a universal grading, and this grading is by a {\em finite}
group. Examples of graded orders are provided by group rings of finite abelian
groups over rings of integers in number fields. We generalize known properties
of nilpotents, idempotents, and roots of unity in such group rings to the case
of graded orders; this has applications to cryptography. Lattices play an
important role in this paper; a novel aspect is that our proofs use that the
additive group of any reduced order can in a natural way be equipped with a
lattice structure.Comment: Added section 10; added to and rewrote introduction and abstract (new
Theorem 1.4 and Examples 1.6 and 1.7
Realizing orders as group rings
An order is a commutative ring that as an abelian group is finitely generated
and free. A commutative ring is reduced if it has no non-zero nilpotent
elements. In this paper we use a new tool, namely, the fact that every reduced
order has a universal grading, to answer questions about realizing orders as
group rings. In particular, we address the Isomorphism Problem for group rings
in the case where the ring is a reduced order. We prove that any non-zero
reduced order can be written as a group ring in a unique ``maximal'' way,
up to isomorphism. More precisely, there exist a ring and a finite abelian
group , both uniquely determined up to isomorphism, such that
as rings, and such that if is a ring and is a group, then
as rings if and only if there is a finite abelian group such that as rings and as groups. Computing and for
given can be done by means of an algorithm that is not quite
polynomial-time. We also give a description of the automorphism group of in
terms of and
Lattices with Symmetry
For large ranks, there is no good algorithm that decides whether a given lattice has an orthonormal basis. But when the lattice is given with enough symmetry, we can construct a provably deterministic polynomial-time algorithm to accomplish this, based on the work of Gentry and Szydlo. The techniques involve algorithmic algebraic number theory, analytic number theory, commutative algebra, and lattice basis reduction
Fast construction of irreducible polynomials over finite fields
International audienceWe present a randomized algorithm that on input a finite field with elements and a positive integer outputs a degree irreducible polynomial in . The running time is elementary operations. The in is a function of that tends to zero when tends to infinity. And the in is a function of that tends to zero when tends to infinity. In particular, the complexity is quasi-linear in the degree
Forms in odd degree extensions and selfdual normal bases
Introduction. Let K be a field. Springer has proved that an ani-sotropic quadratic form over K is also anisotropic over any odd degree extension of K (see [31], [14]). If the characteristic of K is not 2, this implies that two nonsingular quadratic forms that become isomorphic over an extension of odd degree of K are already isomorphic over
The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer
A quantum computer can efficiently find the order of an element in a group,
factors of composite integers, discrete logarithms, stabilisers in Abelian
groups, and `hidden' or `unknown' subgroups of Abelian groups. It is already
known how to phrase the first four problems as the estimation of eigenvalues of
certain unitary operators. Here we show how the solution to the more general
Abelian `hidden subgroup problem' can also be described and analysed as such.
We then point out how certain instances of these problems can be solved with
only one control qubit, or `flying qubits', instead of entire registers of
control qubits.Comment: 16 pages, 3 figures, LaTeX2e, to appear in Proceedings of the 1st
NASA International Conference on Quantum Computing and Quantum Communication
(Springer-Verlag
- âŠ