14,221 research outputs found
Nucleon strange quark content from two-flavor lattice QCD with exact chiral symmetry
Strange quark content of the nucleon is calculated in dynamical lattice QCD
employing the overlap fermion formulation. For this quantity, exact chiral
symmetry guaranteed by the Ginsparg-Wilson relation is crucial to avoid large
contamination due to a possible operator mixing with . Gauge
configurations are generated with two dynamical flavors on a 16^3 x 32 lattice
at a lattice spacing a \simeq 0.12fm. We directly calculate the relevant
three-point function on the lattice including a disconnected strange quark loop
utilizing the techniques of all-to-all quark propagator and low-mode averaging.
Our result f_{T_s} = 0.032(8)(22), is in good agreement with our previous
indirect estimate using the Feynman-Hellmann theorem.Comment: 31 pages, 22 figures; version published in PR
Helicoidal ordering in iron perovskites
We consider magnetic ordering in materials with negative charge transfer
energy, such as iron perovskite oxides. We show that for a large weight of
oxygen holes in conduction bands, the double exchange mechanism favors a
helicoidal rather than ferromagnetic spin ordering both in metals, e.g. SrFeO_3
and insulators with a small gap, e.g. CaFeO_3. We discuss the magnetic
excitation spectrum and effects of pressure on magnetic ordering in these
materials.Comment: 4 pages, 5 figure
In-situ growth of superconducting NdFeAs(O,F) thin films by Molecular Beam Epitaxy
The recently discovered high temperature superconductor F-doped LaFeAsO and
related compounds represent a new class of superconductors with the highest
transition temperature (Tc) apart from the cuprates. The studies ongoing
worldwide are revealing that these Fe-based superconductors are forming a
unique class of materials that are interesting from the viewpoint of
applications. To exploit the high potential of the Fe-based superconductors for
device applications, it is indispensable to establish a process that enables
the growth of high quality thin films. Efforts of thin film preparation started
soon after the discovery of Fe-based superconductors, but none of the earlier
attempts had succeeded in an in-situ growth of a superconducting film of
LnFeAs(O,F) (Ln=lanthanide), which exhibits the highest Tc to date among the
Fe-based superconductors. Here, we report on the successful growth of
NdFeAs(O,F) thin films on GaAs substrates, which showed well-defined
superconducting transitions up to 48 K without the need of an ex-situ heat
treatment
Application of LANDSAT MSS data to the study of oceanographical environment
The author has identified the following significant results. LANDSAT MSS data of a three year time lapse indicate change of sea surface condition in Seto Inland Sea and coastal region. The red tide which formerly concentrated in the bay or inland sea now extends into an open sea. A small ocean vortex similar to mesoscale atmospheric vortex is revealed by the band 4 image of the satellite data. A manual photographic method applied to a single band image of MSS is effective in detecting sea surface pollution
Behavior of Li abundances in solar-analog stars II. Evidence of the connection with rotation and stellar activity
We previously attempted to ascertain why the Li I 6708 line-strengths of
Sun-like stars differ so significantly despite the superficial similarities of
stellar parameters. We carried out a comprehensive analysis of 118 solar
analogs and reported that a close connection exists between the Li abundance
A_Li and the line-broadening width (v_r+m; mainly contributed by rotational
effect), which led us to conclude that stellar rotation may be the primary
control of the surface Li content. To examine our claim in more detail, we
study whether the degree of stellar activity exhibits a similar correlation
with the Li abundance, which is expected because of the widely believed close
connection between rotation and activity. We measured the residual flux at the
line center of the strong Ca II 8542 line, r_0(8542), known to be a useful
index of stellar activity, for all sample stars using newly acquired spectra in
this near-IR region. The projected rotational velocity (v_e sin i) was
estimated by subtracting the macroturbulence contribution from v_r+m that we
had already established. A remarkable (positive) correlation was found in the
A_Li versus (vs.) r_0(8542) diagram as well as in both the r_0(8542) vs. v_e
sin i and A_Li vs. v_e sin i diagrams, as had been expected. With the
confirmation of rotation-dependent stellar activity, this clearly shows that
the surface Li abundances of these solar analogs progressively decrease as the
rotation rate decreases. Given this observational evidence, we conclude that
the depletion of surface Li in solar-type stars, probably caused by effective
envelope mixing, operates more efficiently as stellar rotation decelerates. It
may be promising to attribute the low-Li tendency of planet-host G dwarfs to
their different nature in the stellar angular momentum.Comment: 12 pages, 9 figures; accepted for publication in Astron. Astrophys
Effects of Ram-Pressure from Intracluster Medium on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies
Using a simple model of molecular cloud evolution, we have quantitatively
estimated the change of star formation rate (SFR) of a disk galaxy falling
radially into the potential well of a cluster of galaxies. The SFR is affected
by the ram-pressure from the intracluster medium (ICM). As the galaxy
approaches the cluster center, the SFR increases to twice the initial value, at
most, in a cluster with high gas density and deep potential well, or with a
central pressure of because the ram-pressure
compresses the molecular gas of the galaxy. However, this increase does not
affect the color of the galaxy significantly. Further into the central region
of the cluster ( Mpc from the center), the SFR of the disk
component drops rapidly due to the effect of ram-pressure stripping. This makes
the color of the galaxy redder and makes the disk dark. These effects may
explain the observed color, morphology distribution and evolution of galaxies
in high-redshift clusters. By contrast, in a cluster with low gas density and
shallow potential well, or the central pressure of ,
the SFR of a radially infalling galaxy changes less significantly, because
neither ram-pressure compression nor stripping is effective. Therefore, the
color of galaxies in poor clusters is as blue as that of field galaxies, if
other environmental effects such as galaxy-galaxy interaction are not
effective. The predictions of the model are compared with observations.Comment: 19 pages, 9 figures, to appear in Ap
- …