268 research outputs found

    Large Igneous Provinces and the release of thermogenic volatiles from sedimentary basins

    Get PDF
    Large igneous provinces (LIPs) are characterized by flood basalts and extensive magmatic plumbing systems. When sills and dykes are emplaced in sedimentary basins, the heat released can result in extensive contact metamorphism and gas generation. During the past 20 years, this process has been highlighted as potentially playing a key role in terms of proposed links between LIPs and global environmental changes. The geochemistry of the sedimentary rocks that the magma intrudes, and their potential to generate thermogenic gases such as CO2 and CH4 during heating, are critical controlling factors

    The maintenance and monitoring of perioperative blood volume

    Get PDF
    The assessment and maintenance of perioperative blood volume is important because fluid therapy is a routine part of intraoperative care. In the past, patients undergoing major surgery were given large amounts of fluids because health-care providers were concerned about preoperative dehydration and intraoperative losses to a third space. In the last decade it has become clear that fluid therapy has to be more individualized. Because the exact determination of blood volume is not clinically possible at every timepoint, there have been different approaches to assess fluid requirements, such as goal-directed protocols guided by invasive and less invasive devices. This article focuses on laboratory volume determination, capillary dynamics, aspects of different fluids and how to clinically assess and monitor perioperative blood volume

    Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea

    Get PDF
    The Paleocene–Eocene Thermal Maximum (PETM; ∼ 55.9 Ma) was a period of rapid and sustained global warming associated with significant carbon emissions. It coincided with the North Atlantic opening and emplacement of the North Atlantic Igneous Province (NAIP), suggesting a possible causal relationship. Only a very limited number of PETM studies exist from the North Sea, despite its ideal position for tracking the impact of both changing climate and NAIP activity. Here we present sedimentological, mineralogical, and geochemical proxy data from Denmark in the eastern North Sea, exploring the environmental response to the PETM. An increase in the chemical index of alteration and a kaolinite content up to 50 % of the clay fraction indicate an influx of terrestrial input shortly after the PETM onset and during the recovery, likely due to an intensified hydrological cycle. The volcanically derived zeolite and smectite minerals comprise up to 36 % and 90 % of the bulk and clay mineralogy respectively, highlighting the NAIP's importance as a sediment source for the North Sea and in increasing the rate of silicate weathering during the PETM. X-Ray fluorescence element core scans also reveal possible hitherto unknown NAIP ash deposition both prior to and during the PETM. Geochemical proxies show that an anoxic to sulfidic environment persisted during the PETM, particularly in the upper half of the PETM body with high concentrations of molybdenum (MoEF > 30), uranium (UEF up to 5), sulfur (∼ 4 wt %), and pyrite (∼ 7 % of bulk). At the same time, export productivity and organic-matter burial reached its maximum intensity. These new records reveal that negative feedback mechanisms including silicate weathering and organic carbon sequestration rapidly began to counteract the carbon cycle perturbations and temperature increase and remained active throughout the PETM. This study highlights the importance of shelf sections in tracking the environmental response to the PETM climatic changes and as carbon sinks driving the PETM recovery.publishedVersio

    Release of mercury during contact metamorphism of shale: Implications for understanding the impacts of large igneous province volcanism

    Get PDF
    Elevated mercury (Hg) in sedimentary strata are a widely used tracer for assessing the relationship between large igneous province (LIP) activity and global environmental change. A key unknown in applying this proxy is the extent to which Hg was sourced from contact metamorphism of sedimentary rocks during sill intrusions versus gaseous emissions of the magmas themselves. Here, we investigate Hg behaviour during contact metamorphism of shales. We show loss of 80–99% of the sedimentary Hg in contact aureoles in four case studies covering the interactions around dykes, sills and plutons associated the High Arctic LIP (Sverdrup Basin, Canada), the Karoo LIP (South Africa) and the Skagerrak-centred LIP (Oslo Rift, Norway). A combination of geochemical data and thermal modelling around a dyke from the High Arctic LIP shows 33% Hg volatilization in the aureole at 265–300 °C. The other cases show similar behaviours with significant lowering of organic-bound Hg, more significantly in the innermost 60% of the contact aureoles. We hypothesize that gaseous Hg is transported out of aureoles during metamorphism, together with CH4 and CO2. Furthermore, we estimate the thermogenic Hg mobilization from Karoo LIP aureoles as 72–192 t per km3 of aureole, which is between 1–3 times the estimated volumetric Hg release from Karoo magmas. When scaling our results to the size of the shale portions of the Karoo Basin affected by the LIP and a timescale of 100 kyr of sill emplacement, the average Hg flux is calculated to have been 78–207 t/y with maximum values up to ∼300 t/y. The pulsed nature of intrusive volcanism suggests that this thermogenic Hg flux could have dominated LIP Hg emissions during periods of their life span. Our results demonstrate that the global Hg cycle can be significantly perturbed following LIP-scale sill emplacement into organic-rich sedimentary rocks and our quantification of the emissions based on source-rock analysis provides important information for independent interpretation of the sedimentary Hg record

    A crystal/melt partitioning study for sulfur and halogens: pyroxenes as probes for assessing gas loads in LIP magmas

    Get PDF
    A link between magmatism from Large Igneous Provinces (LIPs) and mass extinctions has been observed at leastin five occasions in the Phanerozoic. Volatile species such as S, C and halogen compounds severely impactedthe global environment, released both from melts and thermal metamorphism of volatile-rich sediments. It is stillchallenging to obtain quantitative estimates of the degassed volatiles for ancient magmatic systems, particularly inthe absence of melt inclusions. We propose to fill the gap of knowledge on sulfur partitioning between mineralsand melts, at the aim of using phenocrysts as probes of volatile contents in the melts from which they crystallized.Measuring a volatile concentration in natural minerals (chiefly clinopyroxene) and combining it with an experi-mentally determined partition coefficient (KD), the volatile load in basaltic equilibrium melts can be calculated.We measured a clinopyroxene/melt sulfur KD of 0.0009\ub10.0001 for basaltic experiments performed at conditionstypical of LIP basalts (FMQ-2; 800-1000 MPa; 1000 \u30a-1350 \u30aC), through ion microprobe (Nordsim). Basaltic ex-periments were also simultaneously analyzed for Cl and F. For these elements the measured clinopyroxene/meltKDs were more variable, 0.0071\ub10.0052 and 0.1985\ub10.087, respectively. Compatibility of sulfur, chlorine andfluorine in clinopyroxene from basaltic systems is markedly different (F>Cl>S), in agreement with what observedby previous studies, and the partition coefficient is well constrained around 0.001 for S. Application of the newlymeasured sulfur KD to samples from thoroughly-dated lava piles from the Deccan Traps and from the SiberianTraps sills reveal that most of the basalts were at or near sulfide saturation (up to ca. 2000 ppm for low fO2melts)

    40Ar/39Ar ages of the sill complex of the Karoo large igneous province: implications for the Pliensbachian-Toarcian climate change.

    Get PDF
    Reliable geochronological results gathered so far (n = 76) have considerably constrained the timing of the emplacement of the Karoo large igneous province (LIP). Yet strikingly missing from this dating effortis the huge southern sill complex cropping out in the >0.6 x 10(6) km2 Main Karoo sedimentary basin. We present 16 new 40Ar/39Ar analyses carried out on fresh plagioclase and biotite separates from 15 sill samples collected along a N-S trend in the eastern part of the basin. The results show a large range of plateau and miniplateau ages (176.2 +- 1.3 to 183.8 +- 2.4 Ma), with most dates suggesting a -3 Ma (181-184 Ma) duration for the main sill events. The available age database allows correlation of the Karoo LIP emplacement with the Pliensbachian-Toarcian second-order biotic extinction, the global warming, and the Toarcian anoxic event (provided that adequate calibration between the 40K and 238U decay constant ismade). The mass extinction and the isotopic excursions recorded at the base of the Toarcian appear to be synchronous with both the increase of magma emission of the Karoo LIP and the emplacement of the sills.The CO2 and SO2 derived from both volcanic emissions as well as carbon-rich sedimentary layers intrudedby sills might be the main culprits of the Pliensbachian-Toarcian climate perturbations. We propose that the relatively low eruption rate of the Karoo LIP is one of the main reasons explaining why its impact on thebiosphere is relatively low contrary to, e.g., the CAMP (Triassic-Jurassic) and Siberia (Permo-Triassic) LIPs

    3D structure and formation of hydrothermal vent complexes at the Paleocene-Eocene transition, the Møre Basin, mid-Norwegian margin

    Get PDF
    Acknowledgments We thank Statoil for providing us with the PL251 (Tulipan) geophysical and geologic reports for well 6302/6- 1. We thank NORSAR for the free academic use of the SeisRox software during the modeling procedures and to Schlumberger for the free academic use of Petrel 2015. Spectral decomposition was carried out using FFA Geoteric software at the University of Aberdeen. FFA are thanked for donation of the software license to the University of Aberdeen. The authors further acknowledge the support from the Research Council of Norway through its Center of Excellence funding scheme, project 223272 (CEED), and from the MIMES project (grant no. 244155). We also gratefully acknowledge the support by the Faculty of Mathematics and Natural Sciences of the University of Oslo to TS. Clayton Grove and Craig Magee are thanked for their many insightful comments and suggestions that helped improve the paper substantially.Peer reviewedPublisher PD

    Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis

    Get PDF
    The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO2. In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206Pb/238U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth

    Halogen Enrichment of Siberian Traps Magmas During Interaction With Evaporites

    Get PDF
    Volatile emissions to the atmosphere associated with the Siberian Traps eruptions at the Permian-Triassic boundary were sourced from the outgassing of primary magmas and the sedimentary host rocks into which they were intruded. Halogens in volcanic gases may have played an important role in environmental degradation and in stratospheric ozone destruction. Here we investigate how halogens behave during the interaction between salts and basalt magma emplaced as sills and erupted as lava. We present whole-rock, trace, and halogen concentrations for a suite of samples from three locations in the Siberian Traps Large Igneous Province, including basalt lavas erupted, and dolerites intruded into both organic-bearing shales and evaporites. Dolerites are enriched in Cl, Br, and I; their enrichment in Cl is similar to MORB and OIB that have been inferred to have assimilated seawater. The dolerites exhibit halogen compositional systematics, which extend towards both evaporites and crustal brines. Furthermore, all analyzed samples show enrichment in Rb/Nb; with the dolerites also showing enrichment in Cl/K similar to MORB and OIB that have been inferred to have assimilated seawater. We infer that samples from all three locations have assimilated fluids derived from evaporites, which are components of crustal sedimentary rocks. We show that up to 89% of the chlorine in the dolerites may have been assimilated as a consequence of the contact metamorphism of evaporites. We show, by thermal modeling, that halogen transfer may occur via assimilation of a brine phase derived from heating evaporites. Halogen assimilation from subcropping evaporites may be pervasive in the Siberian Traps Large Igneous Province and is expected to have enhanced emissions of Cl and Br into the atmosphere from both intrusive and extrusive magmatism.</jats:p
    corecore