25 research outputs found
Neutron-proton analyzing power at 12 MeV and inconsistencies in parametrizations of nucleon-nucleon data
We present the most accurate and complete data set for the analyzing power
Ay(theta) in neutron-proton scattering. The experimental data were corrected
for the effects of multiple scattering, both in the center detector and in the
neutron detectors. The final data at En = 12.0 MeV deviate considerably from
the predictions of nucleon-nucleon phase-shift analyses and potential models.
The impact of the new data on the value of the charged pion-nucleon coupling
constant is discussed in a model study.Comment: Six pages, four figures, one table, to be published in Physics
Letters
Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum
The influence of the magnetic moment interaction of nucleons on
nucleon-deuteron elastic scattering and breakup cross sections and on elastic
scattering polarization observables has been studied. Among the numerous
elastic scattering observables only the vector analyzing powers were found to
show a significant effect, and of opposite sign for the proton-deuteron and
neutron-deuteron systems. This finding results in an even larger discrepancy
than the one previously established between neutron-deuteron data and
theoretical calculations. For the breakup reaction the largest effect was found
for the final-state-interaction cross sections. The consequences of this
observation on previous determinations of the ^1S_0 scattering lengths from
breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur
The cross section minima in elastic Nd scattering: a ``smoking gun'' for three nucleon force effects
Neutron-deuteron elastic scattering cross sections are calculated at
different energies using modern nucleon-nucleon interactions and the
Tucson-Melbourne three-nucleon force adjusted to the triton binding energy.
Predictions based on NN forces only underestimate nucleon-deuteron data in the
minima at higher energies starting around 60 MeV. Adding the three-nucleon
forces fills up those minima and reduces the discrepancies significantly.Comment: 11 pages, 6 figure
The three- and four-nucleon systems from chiral effective field theory
Recently developed chiral nucleon-nucleon (NN) forces at next-to-leading
order (NLO) that describe NN phase shifts up to about 100 MeV fairly well have
been applied to 3N and 4N systems. Faddeev-Yakubovsky equations have been
solved rigorously. The chiral NLO forces depend on a momentum cut-off \Lambda
lying between 540-600 MeV/c. The resulting 3N and 4N binding energies are in
the same range as found using standard NN potentials. In additon, low-energy 3N
scattering observables are very well reproduced like for standard NN forces.
Surprisingly, the long standing A_y-puzzle is resolved at NLO. The cut-off
dependence of the scattering observables is rather mild.Comment: 4 pp, revtex, 3 figure
Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Comparison to Data (II)
Selected Nd breakup data over a wide energy range are compared to solutions
of Faddeev equations based on modern high precision NN interactions alone and
adding current three-nucleon force models. Unfortunately currently available
data probe phase space regions for the final three nucleon momenta which are
rather insensitive to 3NF effects as predicted by current models. Overall there
is good to fair agreement between present day theory and experiment but also
some cases exist with striking discrepancies. Regions in the phase space are
suggested where large 3NF effects can be expected.Comment: 33 pages, 24 ps figures, 9 gif figure
Three-Nucleon Forces from Chiral Effective Field Theory
We perform the first complete analysis of nd scattering at
next-to-next-to-leading order in chiral effective field theory including the
corresponding three-nucleon force and extending our previous work, where only
the two-nucleon interaction has been taken into account. The three-nucleon
force appears first at this order in the chiral expansion and depends on two
unknown parameters. These two parameters are determined from the triton binding
energy and the nd doublet scattering length. We find an improved description of
various scattering observables in relation to the next-to-leading order results
especially at moderate energies (E_lab = 65 MeV). It is demonstrated that the
long-standing A_y-problem in nd elastic scattering is still not solved by the
leading 3NF, although some visible improvement is observed. We discuss
possibilities of solving this puzzle. The predicted binding energy for the
alpha-particle agrees with the empirical value.Comment: 36 pp, 20 figure
A new form of three-body Faddeev equations in the continuum
We propose a novel approach to solve the three-nucleon (3N) Faddeev equation
which avoids the complicated singularity pattern going with the moving
logarithmic singularities of the standard approach. In this new approach the
treatment of the 3N Faddeev equation becomes essentially as simple as the
treatment of the two-body Lippmann-Schwinger equation. Very good agreement of
the new and old approaches in the application to nucleon-deuteron elastic
scattering and the breakup reaction is found.Comment: 20 pages, 3 eps figure