2,448 research outputs found

    Asymmetric Berry-Phase Interference Patterns in a Single-Molecule Magnet

    Full text link
    A Mn4 single-molecule magnet displays asymmetric Berry-phase interference patterns in the transverse-field (HT) dependence of the magnetization tunneling probability when a longitudinal field (HL) is present, contrary to symmetric patterns observed for HL=0. Reversal of HL results in a reflection of the transverse-field asymmetry about HT=0, as expected on the basis of the time-reversal invariance of the spin-orbit Hamiltonian which is responsible for the tunneling oscillations. A fascinating motion of Berry-phase minima within the transverse-field magnitude-direction phase space results from a competition between noncollinear magnetoanisotropy tensors at the two distinct Mn sites.Comment: 4 double-column page

    Scanning a photonic crystal slab nanocavity by condensation of xenon

    Get PDF
    Allowing xenon or nitrogen gas to condense onto a photonic crystal slab nanocavity maintained at 10–20 K results in shifts of the nanocavity mode wavelength by as much as 5 nm (~=4 meV). This occurs in spite of the fact that the mode defect is achieved by omitting three holes to form the spacer. This technique should be useful in changing the detuning between a single quantum dot transition and the nanocavity mode for cavity quantum electrodynamics experiments, such as mapping out a strong coupling anticrossing curve. Compared with temperature scanning, it has a much larger scan range and avoids phonon broadening

    Objectively measured movement asymmetry in yearling Standardbred trotters

    Get PDF
    Background Lameness evaluation of Standardbred trotters can be challenging due to discrepancies in observed movement asymmetry between in-hand and track exercise, and between different trotting speeds. There are few studies on objective measurement of movement in Standardbreds, and little knowledge regarding biological variation and clinical significance of measured movement asymmetry in this breed. Objectives To quantify the prevalence and magnitude of objectively measured movement asymmetry in young Standardbred trotters, and identify associations with trainer, sex, height, track type and in-hand measurement prior to or after track trials. Study design Cross-sectional, observational study. Methods A total of 114 Standardbred yearlings were evaluated with a wireless inertial sensor system during trot in-hand and when driven on a track. After exclusions relating to lameness or technical difficulties, 103 horses were included in the study; 77 were evaluated in-hand and on the track, 24 only in-hand and 2 only on the track. Results Front and/or hindlimb parameters were above asymmetry thresholds previously established for other breeds during in-hand trials for 94 (93%) horses and during track trials for 74 (94%) horses. Most horses showed mild asymmetry. A minority of horses (20%) switched side of the asymmetry for one or more parameters between in-hand and track trials. Mixed model analyses revealed no significant effects of trial mode (in-hand or track trial, in-hand trial pre- or post-track trial, straight or oval track), trainer or horse height. Females had a significant but small reduction in asymmetry in one front limb parameter (HDmax) compared with males (1.7 mm, 95% CI 0.18-3.28,P = .03). Main limitations High data variability, reflected in large trial standard deviations, relating mainly to a lack of horse compliance. Conclusions A high proportion of Standardbred yearlings showed movement asymmetries. There was no group-level effect between in-hand and track trials, however, considerable individual variation was observed

    Rigidity percolation in a field

    Full text link
    Rigidity Percolation with g degrees of freedom per site is analyzed on randomly diluted Erdos-Renyi graphs with average connectivity gamma, in the presence of a field h. In the (gamma,h) plane, the rigid and flexible phases are separated by a line of first-order transitions whose location is determined exactly. This line ends at a critical point with classical critical exponents. Analytic expressions are given for the densities n_f of uncanceled degrees of freedom and gamma_r of redundant bonds. Upon crossing the coexistence line, n_f and gamma_r are continuous, although their first derivatives are discontinuous. We extend, for the case of nonzero field, a recently proposed hypothesis, namely that the density of uncanceled degrees of freedom is a ``free energy'' for Rigidity Percolation. Analytic expressions are obtained for the energy, entropy, and specific heat. Some analogies with a liquid-vapor transition are discussed. Particularizing to zero field, we find that the existence of a (g+1)-core is a necessary condition for rigidity percolation with g degrees of freedom. At the transition point gamma_c, Maxwell counting of degrees of freedom is exact on the rigid cluster and on the (g+1)-rigid-core, i.e. the average coordination of these subgraphs is exactly 2g, although gamma_r, the average coordination of the whole system, is smaller than 2g. gamma_c is found to converge to 2g for large g, i.e. in this limit Maxwell counting is exact globally as well. This paper is dedicated to Dietrich Stauffer, on the occasion of his 60th birthday.Comment: RevTeX4, psfig, 16 pages. Equation numbering corrected. Minor typos correcte

    Extremal Optimization for Graph Partitioning

    Full text link
    Extremal optimization is a new general-purpose method for approximating solutions to hard optimization problems. We study the method in detail by way of the NP-hard graph partitioning problem. We discuss the scaling behavior of extremal optimization, focusing on the convergence of the average run as a function of runtime and system size. The method has a single free parameter, which we determine numerically and justify using a simple argument. Our numerical results demonstrate that on random graphs, extremal optimization maintains consistent accuracy for increasing system sizes, with an approximation error decreasing over runtime roughly as a power law t^(-0.4). On geometrically structured graphs, the scaling of results from the average run suggests that these are far from optimal, with large fluctuations between individual trials. But when only the best runs are considered, results consistent with theoretical arguments are recovered.Comment: 34 pages, RevTex4, 1 table and 20 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    Vulnerability to xylem cavitation and the distribution of sonoran desert vegetation

    Get PDF
    Journal ArticleWe studied 15 riparian and upland Sonoran desert species to evaluate how the limitation of xylem pressure (Vx) by cavitation corresponded with plant distribution along a moisture gradient. Riparian species were obligate riparian trees (Fraxinus velutina, Populus fremontii, and Salix gooddingii), native shrubs (Baccharis spp.), and an exotic shrub (Tamarix ramosissima). Upland species were evergreen (Juniperus monosperma, Larrea tridentata), drought-deciduous (Ambrosia dumosa, Encelia farinosa, Fouquieria splendens, Cercidium microphyllum), and winter-deciduous (Acacia spp., Prosopis velutina) trees and shrubs

    Quantum dot photonic crystal nanocavities: Transition from weak to strong coupling and nonlinear emissions

    Get PDF
    Photonic crystal slab nanocavities containing one layer of quantum dots have exhibited: strong coupling to a single quantum dot; tuning by condensation of xenon gas; linewidth broadening due to ensemble dot absorption; gain and lasing

    Linewidth of single photon transitions in Mn12_{12}-acetate

    Full text link
    We use time-domain terahertz spectroscopy to measure the position and linewidth of single photon transitions in Mn12_{12}-acetate. This linewidth is compared to the linewidth measured in tunneling experiments. We conclude that local magnetic fields (due to dipole or hyperfine interactions) cannot be responsible for the observed linewidth, and suggest that the linewidth is due to variations in the anisotropy constants for different clusters. We also calculate a lower limit on the dipole field distribution that would be expected due to random orientations of clusters and find that collective effects must narrow this distribution in tunneling measurements.Comment: 5 pages, accepted to Physical Review
    • …
    corecore