12,171 research outputs found
Geometrically nonlinear analysis of the Apollo aft heat shield Final report, 1 Apr. 1966 - 15 Dec. 1966
Structural analysis of Apollo aft heat shield under water impact loading condition
A triangular thin shell finite element: Linear analysis
The formulation of the linear stiffness matrix for a doubly-curved triangular thin shell element, using a modified potential energy principle, is described. The strain energy component of the potential energy is expressed in terms of displacements and displacement gradients by use of consistent Koiter strain-displacement equations. The element inplane and normal displacement fields are approximated by complete cubic polynomials. The interelement displacement admissibility conditions are met in the global representation by imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Errors due to the nonzero strains under rigid body motion are shown to be of small importance for practical grid refinements through performance of extensive comparison analyses
A method of limit point calculation in finite element structural analysis
An approach is presented for the calculation of limit points for structures described by discrete coordinates, and whose governing equations derive from finite element concepts. The nonlinear load-displacement path of the imperfect structure is first traced by use of a direct iteration scheme and the determinant of the governing algebraic equations is calculated at each solution point. The limit point is then established by extrapolation and imposition of the condition of zero slope of the plot of load vs. determinant. Three problems are solved in illustration of the approach and in comparison with alternative procedures and test data
A finite element procedure for nonlinear prebuckling and initial postbuckling analysis
A procedure cast in a form appropriate to the finite element method is presented for geometrically nonlinear prebuckling and postbuckling structural analysis, including the identification of snap-through type of buckling. The principal features of this procedure are the use of direct iteration for solution of the nonlinear algebraic equations in the prebuckling range, an interpolation scheme for determination of the initial bifurcation point, a perturbation method in definition of the load-displacement behavior through the postbuckling regime, and extrapolation in determination of the limit point for snap-through buckling. Three numerical examples are presented in illustration of the procedure and in comparison with alternative approaches
Structural and dynamic analysis of the Apollo AFT heat shield Final report, Sep. 12, 1964 - Mar. 1, 1966
Structural and dynamic analysis of Apollo aft heat shiel
Fano Lineshapes Revisited: Symmetric Photoionization Peaks from Pure Continuum Excitation
In a photoionization spectrum in which there is no excitation of the discrete
states, but only the underlying continuum, we have observed resonances which
appear as symmetric peaks, not the commonly expected window resonances.
Furthermore, since the excitation to the unperturbed continuum vanishes, the
cross section expected from Fano's configuration interaction theory is
identically zero. This shortcoming is removed by the explicit introduction of
the phase shifted continuum, which demonstrates that the shape of a resonance,
by itself, provides no information about the relative excitation amplitudes to
the discrete state and the continuum.Comment: 4 pages, 3 figure
Impingement of Water Droplets on NACA 65A004 Airfoil at 8 deg Angle of Attack
The trajectories of droplets in the air flowing past an NACA 65AO04 airfoil at an angle of attack of 8 deg were determined.. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. These impingement characteristics are compared briefly with those previously reported for the same airfoil at an angle of attack of 4 deg
Urban and regional land use analysis: CARETS and census cities experiment package
The author has identified the following significant results. Temperatures in degrees Celsius were derived from PCM counts using the Pease's modified gray window technique. The Outcalt simulator was setup on the USGS computer. The input data to the model are basically meteorological and geographical in nature. The output data is presented in three matrices
Advanced multilateration theory, software development, and data processing: The MICRODOT system
The process of geometric parameter estimation to accuracies of one centimeter, i.e., multilateration, is defined and applications are listed. A brief functional explanation of the theory is presented. Next, various multilateration systems are described in order of increasing system complexity. Expected systems accuracy is discussed from a general point of view and a summary of the errors is listed. An outline of the design of a software processing system for multilateration, called MICRODOT, is presented next. The links of this software, which can be used for multilateration data simulations or operational data reduction, are examined on an individual basis. Functional flow diagrams are presented to aid in understanding the software capability. MICRODOT capability is described with respect to vehicle configurations, interstation coordinate reduction, geophysical parameter estimation, and orbit determination. Numerical results obtained from MICRODOT via data simulations are displayed both for hypothetical and real world vehicle/station configurations such as used in the GEOS-3 Project. These simulations show the inherent power of the multilateration procedure
- …